首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
School science laboratory classes and hands-on public engagement activities share many common aims and objectives in terms of science learning and literacy. This article describes the development and evaluation of a microbiology public engagement activity, ‘The Good, the Bad and the Algae’, from a school laboratory activity. The school activity was developed as part of an educational resource which aimed to promote practical microbiology in the classroom. The public engagement activity was derived locally for National Science and Engineering Week 2011 and was subsequently adapted for a national science and engineering fair (The Big Bang 2012 The Big Bang. 2012. About The Big Bang Fair. http://www.thebigbangfair.co.uk/about_us.cfm. [Google Scholar]). The aim of the session was to raise awareness of the importance of algae and to encourage hands-on laboratory examination in a fun and informal manner. Evaluation of the first event, delivered in a workshop format, helped shape the educational resource before publication. The second event was modified to enable delivery to a larger audience. Both events were successful in terms of enjoyment and engagement. Over 2200 people participated in the Big Bang activity over three days, with evaluation indicating 80% of participants had increased awareness/knowledge of algae after the event. The success of both iterations of the activity demonstrates that it is possible to transform a simple school activity into an exciting and effective public engagement activity.  相似文献   

2.
The amount of iron within the cell is carefully regulated in order to provide an adequate level of the micronutrient while preventing its accumulation to toxic levels. Iron excess is believed to generate oxidative stress, understood as an increase in the steady state concentration of oxygen radical intermediates. The main aspects of cellular metabolism of iron, with special emphasis on the role of iron with respect to oxidative damage to lipid membranes, are briefly reviewed here. Both in vitro and in vivo models are examined. Finally, a discussion of iron overload and its impact on human health is included. Overall, further studies are required to assess more effective means to limit iron-dependent damage, by minimizing the formation and release of free radicals in tissues when the cellular iron steady state concentration is increased either as a consequence of disease or by therapeutic iron supplementation.  相似文献   

3.
4.
Iron, to be redox cycling active, has to be released from its macromolecular complexes (ferritin, transferrin, hemoproteins, etc.). Iron is released from hemoglobin or its derivatives in a nonprotein-bound, desferrioxamine-chelatable form (DCI) in a number of conditions in which the erythrocytes are subjected to oxidative stress. Such conditions can be related to toxicological events (haemolytic drugs) or to physiological situations (erythrocyte ageing, reproduced in a model of prolonged aerobic incubation), but can also result from more subtle circumstances in which a state of ischemia-reperfusion is imposed on erythrocytes (e.g., childbirth). The released iron could play a central role in oxidation of membrane proteins and senescent cell antigen (SCA) formation, one of the major pathways for erythrocyte removal. Iron chelators able to enter cells (such as ferrozine, quercetin, and fluor-benzoil-pyridoxal hydrazone) prevent both membrane protein oxidation and SCA formation. The increased release of iron observed in beta-thalassemia patients and newborns (particularly premature babies) suggests that fetal hemoglobin is more prone to release iron than adult hemoglobin. In newborns the release of iron in erythrocytes is correlated with plasma nonprotein-bound iron and may contribute to its appearance.  相似文献   

5.
In the last decade, awareness of the harmful effects of solar ultraviolet radiation has increased. Modern lifestyles, outdoor occupations, sports and other activities make total sun avoidance impossible. Children spend more time outdoors than adults and there is compelling evidence that childhood is a particularly vulnerable time for the photocarcinogenic effects of the sun. Sun exposure among infants and pre-school age children is largely depend on the discretion of adult care providers. It is important to learn safe habits about sun-safety behaviours during the childhood. Children deserve to live and play in safe environments, and it is the responsibility of every adult to help children stay safe. Protecting children from excessive sun exposure is protection from sunburn today and other forms of sun damages, especially skin cancers, in the future.  相似文献   

6.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

7.
Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.  相似文献   

8.
Abstract The effects of solar and artificial ultraviolet radiation on the motility and orientation of the dinoflagellate Y-100 were studied. The cells show a weak photokinesis but a pronounced phototaxis which is consistently positive between 1 and 100 klx (= 4 mW m−2 to 400 mW m−2); the precision of orientation increases with the fluence rate. Unfiltered solar radiation as well as artificial ultraviolet radiation reduce the percentage of motile cells increasingly with exposure time but the velocity of the still motile cells is less affected. Unirradiated control cells show a negative gravitaxis. After short exposure to solar or artificial ultraviolet radiation the precision of gravitaxis decreases and after prolonged exposure the cells start to actively move downward in the water column (positive gravitaxis). Phototaxis is also strongly impaired by ultraviolet radiation.  相似文献   

9.
10.
DNA mismatch repair (MMR) is important for preventing base-pair substitutions caused by spontaneous or damage-related DNA polymerase errors. We have used a reversion assay based on mouse Aprt to investigate the role of MMR in preventing ultraviolet radiation (UV) and oxidative stress induced tandem CC --> TT base pair substitutions in cultured mammalian cells. The reversion construct used for this assay can detect both C --> T and CC --> TT mutational events. Most spontaneous mutations in Pms2-deficient cells were single C --> T substitutions (88%), with the remainder being tandem CC --> TT substitutions (12%). The percentage of tandem CC --> TT substitutions rose to 64% and 94% for Pms2-deficient cells exposed to UV and a mixture of hydrogen peroxide and metals (Cu/Fe), respectively. Exposure to hydrogen peroxide alone or metals alone did not induce the tandem substitutions, nor did treatment of the cells with the alkylating agent ethylmethane sulfonate, which induces G --> A substitutions on the opposite strand. Tandem CC --> TT substitutions were also induced by UV irradiation and the hydrogen peroxide/metal mixture in Pms2-proficient cells, but at frequencies significantly lower than those observed in the Pms2-deficient cells. We conclude that mismatch repair plays an important role in preventing tandem CC --> TT substitutions induced by certain genotoxin exposures.  相似文献   

11.
Many investigators have concluded that the level of solar ultraviolet radiation (200–300 nm) reaching the surface was a key parameter in the origin and evolution of life on Earth. The level of solar ultraviolet radiation between 200 and 300 nm is controlled primarily by molecular absorption by ozone, whose presence is trongly coupled to the level of molecular oxygen. In this paper, we present a series of calculations of the solar ultraviolet radiation reaching the surface for oxygen levels ranging from 10–4 present atmospheric level to the present level. The solar spectrum between 200 and 300 mn has been divided into 34 spectral intervals. For each spectral interval, we have calculated the solar ultraviolet radiation reaching the Earth's surface by considering the attenuation of the incoming beam due to ozone and oxygen absorption. A one-dimensional photochemical model of the atmosphere was used for these calculations.  相似文献   

12.
13.
Abstract The effects of solar irradiation and artificial UV irradiation on several cyanobacteria ( Anabaena variabilis and two strains of Phormidium uncinatum ) have been studied. Both types of radiation affect the percentage of motile filaments and impair the linear velocity of the organisms. Long term exposure to UV radiation bleaches the photosynthetic pigments as determined by absorption difference spectra. Fluorescence excitation and emission spectra indicate that under ultraviolet radiation the energy transfer from the accessory pigments to chlorophyll is affected. Furthermore the structural integrity of the phycobilisomes seems to be impaired by continuous radiation and the photoreceptor pigments seem to be destroyed.  相似文献   

14.
阳光紫外辐射对褐藻羊栖菜生长和光合作用的影响   总被引:1,自引:0,他引:1  
为探讨经济褐藻羊栖菜对阳光紫外辐射变化的响应,我们在全波段阳光辐射(280-700 nm),去除UV-B辐射(320-700 nm)以及光合有效辐射PAR (400-700 nm)三种辐射条件下对其进行培养,测定了其光合作用与生长的变化。羊栖菜的生长是通过每两天测量一次藻体的湿重来测定的,光合放氧是用Clark型氧电极测定的,为了测定藻体叶绿素a和紫外吸收物质的含量,从250 nm到750 nm对羊栖菜的甲醇提取液进行扫描,叶绿素a的浓度用Porra的公式计算,紫外吸收物质的计算是根据Dunlap的方法先计算紫外吸收物质和叶绿素a的比率,然后乘以每单位藻体叶绿素a的含量。结果表明,当藻体接收较多的日辐射量时有较高的相对生长速率,当滤除UVR后,较高的太阳辐射也导致了较高的光合放氧。然而太阳紫外辐射能够抑制藻体的光合放氧和生长速率,降低叶绿素a的浓度,并且这种抑制作用随着辐射水平的升高而增强。此外,阳光紫外辐射也诱导产生了一定量的紫外吸收物质,但并不足以抵抗紫外辐射对藻体的伤害作用。  相似文献   

15.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

16.
17.
18.
Cells of Chlorella regularis (Artari) Oltmanns (S-50) were grown under solar radiation in Tokyo, using a newly constructed outdoor culture system. The maximum specific growth rate (log2 unit h−1) was about 0.3, which was a little lower than the highest value reported using artificial light in the laboratory. The near ultraviolet light, consisting mostly of UV-A, inhibited the growth from 10 to 40% in summer mornings; the inhibition was not significant in the afternoon. The percentage inhibition was correlated with the total dose of the ultraviolet radiation.  相似文献   

19.
Iron is a transition metal and essential constituent of almost all living cells and organisms. As component of various metalloproteins it is involved in critical biochemical processes such as transport of oxygen in tissues, electron transfer reactions during respiration in mitochondria, synthesis and repair of DNA, metabolism of xenobiotics, etc. However, when present in excess within cells and tissues, iron disrupts redox homeostasis and catalyzes the propagation of reactive oxygen species (ROS), leading to oxidative stress. ROS are critical for physiological signaling pathways, but oxidative stress is associated with tissue injury and disease. At the cellular level, oxidative stress may lead to ferroptosis, an iron-dependent form of cell death. In this review, we focus on the intimate relationship between iron metabolism and oxidative stress in health and disease. We discuss aspects of redox- and iron-mediated signaling, toxicity, ferroptotic cell death, homeostatic pathways and pathophysiological implications.  相似文献   

20.
In the eye, ultraviolet radiation (UVR) is not known to contribute to visual perception but to mainly damage multiple structures. UVR carries higher energy than visible light and high dose exposure to UVR causes direct cellular damage, which has an important role in the development of cancer. This review provides an overview on the most recent knowledge on the role of UVR in oxidative stress (OS) in relation to noncancer ocular pathologies: various corneal pathologies, cataract, glaucoma and age‐related macular degeneration. Possible OS signaling streams and mechanisms in the aging eye are discussed. Excessive exposure to UVR through live may seriously contribute to increase in OS of various eye tissues and thus lead to the advancement of serious ocular pathologies. Children are especially vulnerable to UVR because of their larger pupils and more transparent ocular media: up to 80% of a person's lifetime exposure to UVR is reached before the age of 18. Therefore, efficient everyday protection of the sensitive tissues of the eye by wearing of sunglasses, clear UVR‐blocking spectacles or contact lenses should be considered from early age on. Many initiatives are taken worldwide to inform and raise the population's awareness about these possible UVR hazards to the eye.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号