首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The luminescene of 1O2 (1270 nm) has been observed upon illumination of air saturated solutions of different porphyrins and their complexes with Zn in CCl4. In solutions of Co-, Cu-, Ni- and Fe-porphyrins this luminescence has not been revealed. All the porphyrins studied have shown to quench 1O2, the rate constants of the "physical" and "chemical" quenching being measured. The physical way of quenching is found to be much more effective. The quenching activity of the pigments depends greatly on the presence and nature of the central metall atom incorporated into porphyrin (H2 less than Cu less than Zn less than Co approximately Ni approximately Fe) increases with hydrogenation of the semiisolated double bonds (porphyrins are less active than chlorins and bacteriochlorins).  相似文献   

2.
UVA light (320-400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), beta-nicotinamide adenine dinucleotide (NAD), and beta-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (PhiDelta = 0.54 +/- 0.07), FMN (PhiDelta = 0.51 +/- 0.07), and FAD (PhiDelta = 0.07 +/- 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).  相似文献   

3.
With the use of mechanical phosphoroscope the "universal" delayed emission has been found in aerobic solutions of different sensitizers in CCl4. The spectrum of this emission has the main maximum at 703 nm. The luminescence intensity is proportional to the square of the intensity of the exciting light. Removal of oxygen or addition of 10% of acetone led to disappearance of the luminescence. At equal intensities of singlet oxygen generation relative intensities of the 1272 and 703 nm bands differed by several orders of magnitude in solutions of different sensitizers. The energy migration from the molecules responsible for the luminescence to bacteriopheophytin and phtalocyanine has been observed. The luminescence is interpreted as dimol emission of solvated singlet molecular oxygen activated by sensitizer molecules.  相似文献   

4.
It is shown that kinurenine derivatives, harmane (beta-carboline) and tetracycline hydrochloride known as photosensitizers of cataractogenesis in lens produce luminescence of singlet molecular oxygen (1O2) under photoexcitation in air saturated aqueous (D2O) solution. The quantum yields of the 1O2 generation by these substances are determined. The data obtained by this direct 1O2 determination technique suggest that 1O2 might take part in cataractogenesis.  相似文献   

5.
Characterization of protein damage during photosensitization of chlorin e6-treated cells was performed using the green fluorescent protein (GFP). The GFP-chromophore damage caused by singlet oxygen was studied in COS 7 kidney cells and E. coli bacteria following light irradiation. Electron spin resonance (ESR) revealed the generation of endogenous singlet oxygen (1O2) by photoactivated GFP, an effect similar to that produced by the exogenous photosensitizer chlorin e6. A light dose-dependent photobleaching effect of GFP was pronounced at low pH or upon photosensitization with chlorin e6. However, the 1O2 quenchers beta-carotene and sodium azide minimized GFP photo-bleaching. Gel electrophoresis of photosensitized GFP followed by fluorescence multi-pixel spectral imaging revealed the binding of chlorin e6 to GFP, affecting the photobleaching efficacy. Fluorescence multi-pixel spectral imaging of GFP-transfected COS 7 cells demonstrated the presence of GFP in the cytoplasm and nucleus, while chlorin e6 was found to be concentrated in the perinuclear vesicles. Exposure of the cells to light induced GFP photobleaching in the close vicinity of chlorin e6 vesicles. We conclude that photoactivated GFP generates endogenous 1O2, inducing chromophore damage, which can be enhanced by the cooperation of exogenous chlorin e6.  相似文献   

6.
Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen (1O2) through interactions of photosensitizer, light, and oxygen (3O2). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial 1O2 dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes. Although the 1270 nm luminescence emission from 1O2 provides a direct and predictive PDT dose metric, it may not be clinically practical. We used 1O2 luminescence (or singlet oxygen luminescence (SOL)) as a gold-standard metric to evaluate potentially more clinically feasible dosimetry based on photosensitizer bleaching. We performed in vitro dose-response studies with simultaneous SOL and photosensitizer fluorescence measurements under various conditions, including variable 3O2, using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). The results show that SOL was always predictive of cytotoxicity and immune to PDT's complex dynamics, whereas photobleaching-based dosimetry failed under hypoxic conditions. However, we identified a previously unreported 613 nm emission from mTHPC that indicates critically low 3O2 levels and can be used to salvage photobleaching-based dosimetry. These studies improve our understanding of PDT processes, demonstrate that SOL is a valuable gold-standard dose metric, and show that when used judiciously, photobleaching can serve as a surrogate for 1O2 dose.  相似文献   

7.
Luminescence of singlet oxygen dimols (1O2)2 was studied in aerobic solutions of a nonfluorescent photosensitizer phenalenone in CCl4 and C6F6 using a setup with a mechanical phosphoroscope and relatively low rates of photosensitizer excitation. The luminescence spectrum was found to resemble those reported in our previous papers dealing with dimol luminescence in solutions of porphyrins and other organic dyes. The main maximum was located at 703–706 nm, and two much weaker bands at 640 and 770–780 nm. These data suggest that dimol luminescence arises owing to interaction of two 1O2 molecules and one ground-state pigment molecule. Light is emitted by the dimol-pigment contact complexes, which are formed as a result of 1O2 collisions with metastable, probably triplet, intermediates appearing in 1O2 reaction with pigment molecules. It is proposed that this mechanism of dimol luminescence might be of general importance for photochemical, chemical, and biological systems where singlet oxygen is generated. However, the luminescence of this type dominates at relatively low rates of 1O2 generation. According to the literature data, at high 1O2 generation rates the prevalent type of dimol luminescence has the main maximum at 635–637 nm and is caused by direct collisions of two 1O2 molecules.  相似文献   

8.
The possible mutagenic effects induced by singlet oxygen, which is formed during UVA irradiation of bacterial cells pretreated with 8-methoxypsoralen (8-MOP), were investigated. As genetic endpoint, back mutation from arg56? to arg+ was assayed in strain Escherichia coli K-12/343/113/uvrB; this system, in preliminary experiments, was rather sensitive to 8-MOP-induced photodynamic effects. To assess the involvement of singlet oxygen (1O2) in the mutation induction process, 2 tests were applied, namely, comparative mutation induction in D2O and in H2O media (pH 7.0) and quenching of 1O2 with 1,4-diazabicyclo[2.2.2]octane (DABCO).When photodynamy was performed with the indicator cells suspended in D2O buffer, the mutagenic effect was substantially higher than that obtained with cells suspended in H2O buffer; this increase was even more pronounced when the incubation mixtures were thoroughly oxygenated before irradiation. D2O itself was not mutagenic under the present experimental conditions. Addition of DABCO in concentrations of 0.1–10 mM to the irradiation mixtures effectively reduced the number of 8-MOP-induced mutant yields by about 40%. DABCO itself had no effect on cell viability or on spontaneous mutation frequency under our experimental conditions.From these 2 sets of results, and from the preliminary findings that the photomutagenic effect of 8-MOP is higher in the uvrB derivative than in the corresponding excision-repair-proficient parent strain, which is in concordance with previous observations in other E coli strains, it can be concluded that 1O2 generated upon UVA irradiation of 8-MOP solutions is probably responsible for part of the observed genetic effects.  相似文献   

9.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

10.
Krasnovskiĭ AA 《Biofizika》2004,49(2):305-321
The primary mechanisms for the photodynamic action of pigments and dyes, the principles of their division into mechanisms of type I and type II, and the role of these processes in biological systems are reviewed. Singlet oxygen is considered to be an indicator of the mechanisms of photodynamic reactions. The methods of its detection are described, which are based on the use of chemical traps, measurements of infrared phosphorescance at 1270 nm, and the registration singlet oxygen-sensitized delayed fluorescence caused by the summation of the energy of two singlet oxygen molecules by one dye molecule.  相似文献   

11.
Singlet oxygen ((1)O(2)) is a reactive oxygen species that may be generated in biological systems. Photodynamic therapy generates (1)O(2) by photoexcitation of sensitizers resulting in intracellular oxidative stress and induction of apoptosis. (1)O(2) oxidizes amino acid side chains of proteins and inactivates enzymes when generated in vitro. Among proteogenic amino acids, His, Tyr, Met, Cys, and Trp are known to be oxidized by (1)O(2) at physiological pH. However, there is a lack of direct evidence of oxidation of proteins by (1)O(2). Because (1)O(2) is difficult to detect in cells, identifying oxidized cellular products uniquely derived from (1)O(2) could serve as a marker of its presence. In the present study, (1)O(2) reactions with model peptides analyzed by tandem mass spectrometry provide insight into the mass of prominent adducts formed with the reactive amino acids. Analysis by MALDI-TOF and tandem mass spectrometry of peptides of cytochrome c exposed to (1)O(2) generated by photoexcitation of the phthalocyanine Pc 4 showed unique oxidation products, which might be used as markers of the presence of (1)O(2) in the mitochondrial intermembrane space. Differences in the elemental composition of the oxidized amino acid residues observed with cytochrome c and the model peptides suggest that the protein environment can affect the oxidation pathway.  相似文献   

12.
Peptide analysis of tryptic hydrolysates of two lysozyme forms derived from oxidation of lysozyme with singlet oxygen shows that Trp-62, located at the active site, is destroyed. This is confirmed by the protective effect of the substrate (chitin), whose presense practically prevents the oxidation. A possibility of oxidating different tryptophan residues is discussed from the view-point of their availability to the reagent.  相似文献   

13.
Ultraviolet A (UVA; 320-400 nm) radiation in human skin fibroblasts induces a pattern of mitogen-activated protein kinase (MAPK) activation consisting of a rapid and transient induction of p38 and c-Jun-N-terminal kinase (JNK) activity but not extracellular signal-regulated kinases (ERK). UVA activation of p38 can be inhibited by the singlet oxygen (1O2) quenchers azide and imidazole, but not by the hydroxyl radical scavengers mannitol or dimethylsulfoxide, pointing to the involvement of 1O2. The same effect has been shown for JNK. Like UVA, 1O2 generated intracellularly upon photoexcitation of Rose Bengal activates p38 and JNK but not ERK. p38 and JNK activation was also elicited by chemiexcitation for the intracellular generation of 1O2 by the lipophilic 1,4-endoperoxide of N,N'-di(2,3-dihydroxypropyl)-1, 4-naphthalene dipropionamide. In contrast, extracellular generation of 1O2, by irradiation of Rose Bengal immobilized on agarose beads or by chemiexcitation employing the hydrophilic 1,4-endoperoxide of disodium 3,3'-(1,4-naphthylidene) dipropionate, was ineffective in activating p38 or JNK. These data suggest that the activation of p38 and JNK by 1O2 occurs only when the electronically excited molecule is generated intracellularly.  相似文献   

14.
Purified catalase-1 (CAT-1) from Neurospora crassa asexual spores is oxidized by singlet oxygen giving rise to active enzyme forms with different electrophoretic mobility. These enzyme forms are detected in vivo under stress conditions and during development at the start of the asexual morphogenetic transitions. CAT-1 heme b is oxidized to heme d by singlet oxygen. Here, we describe functional and structural comparisons of the non-oxidized enzyme with the fully oxidized one. Using a broad H(2)O(2) concentration range (0.01-3.0 M), non-hyperbolic saturation kinetics was found in both enzymes, indicating that kinetic complexity does not arise from heme oxidation. The kinetics was consistent with the existence of two kinds of active sites differing more than 10-times in substrate affinity. Positive cooperativity for one or both of the saturation curves is possible. Kinetic constants obtained at 22 degrees C varied slightly and apparent activation energies for the reaction of both components are not significantly different. Protein fluorescence and circular dicroism of the two enzymes were nearly identical, indicating no gross conformational change with oxidation. Increased sensitivity to inhibition by cyanide indicated a local change at the active site in the oxidized catalase. Oxidized catalase was less resistant to high temperatures, high guanidinium ion concentration, and digestion with subtilisin. It was also less stable than the non-oxidized enzyme at an acid pH. The overall data show that the oxidized enzyme is structurally different from the non-oxidized one, although it conserves most of the remarkable stability and catalytic efficiency of the non-oxidized enzyme. Because the enzyme in the cell can be oxidized under physiological conditions, preservation of functional and structural properties of catalase could have been selected through evolution to assure an active enzyme under oxidative stress conditions.  相似文献   

15.
Fifteen plant alkaloids and related heterocyclic compounds were tested for their ability to quench singlet oxygen. Most of the compounds showed high activity; brucine and strychnine were especially efficient quenchers. Brucine, at a concentration of ca 2.6 x 10?5 M, is capable of inactivating half the singlet oxygen molecules it encounters. This quenching may serve in nature to protect plants from the deleterious effects of singlet oxygen or other reactive oxidants.  相似文献   

16.
Physical and chemical scavenging of singlet molecular oxygen by tocopherols   总被引:4,自引:0,他引:4  
Singlet molecular oxygen (1O2) arising from the thermal decomposition of the endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate was used to assess the effectiveness of alpha-, beta-, gamma-, and delta-tocopherol in the physical quenching as well as the chemical reaction of 1O2. The relative physical quenching efficiencies of the tocopherol homologs were found to decrease in the order of alpha greater than or equal to beta greater than gamma greater than delta-tocopherol. The ability of physical quenching depends on a free hydroxyl group in position 6 of the chromane ring. Chemical reactivity of the tocopherol homologs with 1O2 was low, accounting for 0.1-1.5% of physical quenching with beta-tocopherol showing particularly low reactivity, resulting in the sequence alpha greater than gamma greater than delta greater than beta-tocopherol. Tocopheryl quinones were products of all tocopherol homologs, and in addition a quinone epoxide was a major product from gamma-tocopherol. This quinone epoxide was not cleaved by rat liver microsomal epoxide hydrolase; however, it reacted further with 1O2. It is concluded that methylation in position 5 of the chromane ring enhances physical quenching of 1O2, whereas chemical reactivity is favored by a methylated position 7. In view of the fact that beta-tocopherol is as effective as alpha-tocopherol in physical quenching of 1O2 but shows very low chemical reactivity, this tocopherol homolog might be particularly suitable for biological conditions in which an accumulation of oxidation products might weaken the antioxidant defense.  相似文献   

17.
Protection by isoprene against singlet oxygen in leaves   总被引:20,自引:0,他引:20       下载免费PDF全文
Affek HP  Yakir D 《Plant physiology》2002,129(1):269-277
Isoprene (2-methyl-1,3-butadiene) protection against effects of singlet oxygen was investigated in Myrtus communis and Rhamnus alaternus. In M. communis, singlet oxygen produced in the leaves by Rose Bengal (RB) led to a 65% decrease in net assimilation rates within 3 h, whereas isoprene emission rates showed either a 30% decrease at ambient CO2 concentrations or a 70% increase under high CO2. In both cases, these changes led to an increase in calculated internal isoprene concentrations. The isoprene protection effect was directly demonstrated by fumigation of young (non-emitting) leaves, treated with RB or bromoxynil (simulating photoinhibition). There was 42% and 29% reduction in the damage to net assimilation compared with non-fumigated leaves for RB or bromoxynil, respectively. In R. alaternus, similar effects of RB on net assimilation were observed, and additional fluorescence measurements showed a significantly smaller decrease in Fv/Fm in isoprene-fumigated young leaves treated with RB (from 0.78 to 0.52), compared with non-fumigated leaves (from 0.77 to 0.27). The internal isoprene concentrations used in this study and possible rate of 1O2 production in leaves indicate that the protective effects observed should be beneficial also under natural conditions.  相似文献   

18.
The recent increase of ultraviolet (UV) rays on Earth due to the increasing size of the ozone hole is suggested to be harmful to life and to accelerate premature photoaging of the skin. The detrimental effects of UV radiation on the skin are associated with the generation of reactive oxygen species (ROS) such as superoxide anion radical (*O(-)(2)), hydrogen peroxide (H(2)O(2)), hydroxyl radical (*OH), and singlet oxygen ((1)O(2)). However, direct proof of such ROS produced in the skin under UV irradiation has been elusive. In this study, we report first in vivo detection and imaging of the generated ROS in the skin of live mice following UVA irradiation, in which both a sensitive and specific chemiluminescence probe (CLA) and an ultralow-light-imaging apparatus with a CCD camera were used. In addition, we found that *O(-)(2) is formed spontaneously and (1)O(2) is generated in the UVA-irradiated skin. This method should be useful not only for noninvasive investigation of the spatial distribution and quantitative determination of ROS in the skin of live animals, but also for in vivo evaluation of the protective ability of free radical scavengers and antioxidants.  相似文献   

19.
The biological significance of singlet oxygen (1O2), an electronically excited species of oxygen, has been realized only in the last two decades. This was mainly due to the lack of proper methodology to generate this reactive oxygen species (ROS) in pure form and its reactions with biological molecules. Recent studies, using newly developed detection methods, show that 1O2 being generated in many biological systems, can significantly and quite often adversely alter several crucial biomolecules including DNA, proteins and lipids with undesirable consequences including cytotoxicity and/or disesase development. The reactions of 1O2 with the biological molecules are rather specific, as compared to other ROS. There are various compounds, mainly derived from natural sources that offer protection against damage induced by 1O2. Among the antioxidants carotenoids are the most effective singlet oxygen quenchers followed by tocopherols and others. The same reactive species if generated specifically in diseased states such as cancer can lead to the cure of the disease, and this principle is utilized in the newly developing modality of cancer treatment namely photodynamic therapy. Singlet oxygen, in low concentrations can also act as signaling molecule with several biological implications. This review clearly brings out the biological significance of 1O2.  相似文献   

20.
Chemical quenching of singlet oxygen by carotenoids in plants   总被引:2,自引:0,他引:2  
Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号