首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A fluorescent sensor for Fe(3+) has been synthesized based on rhodamine-lactam, which shows excitation (531 nm) and emission (557 nm) wavelength, displays an excellent selectivity for Fe(3+) and can be used for imaging Fe(3+) in living cells. The pK(a) of the sensor is as low as of 3.2. It can be used in the range of pH 5-9.  相似文献   

2.
Dai H  Liu F  Gao Q  Fu T  Kou X 《Luminescence》2011,26(6):523-530
An intramolecular charge transfer (ICT) fluorescent sensor 1 using a dansyl moiety as the fluorophore and an azathia-crown ether as the receptor was designed, synthesized and characterized. The ions-selective signaling behaviors of the sensor 1 were investigated in CH(3) CN-H(2) O (1:1, v/v) by fluorescence spectroscopy. It exhibited remarkable fluorescence quenching upon addition of Hg(2+), which was attributed to the 1:1 complex formation between 1 and Hg(2+), while other selected metal ions induced basically no spectral changes. The sensor 1 showed a rapid and linear response towards Hg(2+) in the concentration range from 5.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) with the detection limit of 1.0 × 10(-7) mol L(-1). Furthermore, the whole process could be carried out in a wide pH range of 2.0-8.0 and was not disturbed by other metal ions. Thus, the sensor 1 was used for practical determination of Hg(2+) in different water samples with satisfactory results.  相似文献   

3.
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated.  相似文献   

4.
Huang HJ  Fang HY  Chir JL  Wu AT 《Luminescence》2011,26(6):518-522
We synthesized two ribosyl-based fluorescent sensors. Both sensors have an anthracene as the fluorophore, but they differ in the recognition site for metal ions. One (3) has two ribosyl esters, and the other (6) has two triazole groups linked to two ribosyl esters. Among the metal ions examined in MeOH, compound 3 displayed a large chelation-enhanced fluorescence (CHEF) effect with Hg(2+) and Cu(2+) ions, and compound 6 displayed a large chelation-quenched fluorescence (CHQF) effect with Cu(2+) and Ni(2+) ions. The results demonstrated that the absence (sensor 3) and presence (sensor 6) of an incorporated bis-triazole group in a ribosyl-based fluorescent sensor conferred different preferences and distinct binding modes for metal ions.  相似文献   

5.
DNAzymes have become an excellent choice for sensing applications. Based on DNAzymes, three generations of Pb(2+) fluorescent sensors have been reported. In these sensors, two oligonucleotide strands (substrate strand and enzyme strand) were used, which not only increased the complexity of the detection system, but also brought some difficulties for the use of the sensors at elevated temperatures. To overcome this problem, a single-stranded DNAzyme-based Pb(2+) fluorescent sensor was designed by combining the substrate sequence and the enzyme sequence into one oligonucleotide strand. The intramolecular duplex structure of this single-stranded DNAzyme kept the fluorophore and the quencher, labeled at its two ends, in close proximity; thus the background fluorescence was significantly suppressed. Using this fluorescent sensor, Pb(2+) quantitation can be achieved with high sensitivity and high selectivity. In addition, the extraordinary stability of the intramolecular duplex structure could assure a low background fluorescence at high temperature, even if the number of complementary base pairs between the substrate sequence and the enzyme sequence was reduced, allowing the sensor to work well over a wide temperature range. Similar performances of the fluorescent sensor at 4, 25 and 37°C suggested that this sensor has a good ability to resist temperature fluctuations.  相似文献   

6.
It has been hypothesized that under NO(3)(-) nutrition a high apoplastic pH in leaves depresses Fe(3+) reductase activity and thus the subsequent Fe(2+) transport across the plasmalemma, inducing Fe chlorosis. The apoplastic pH in young green leaves of sunflower (Helianthus annuus L.) was measured by fluorescence ratio after xylem sap infiltration. It was shown that NO(3)(-) nutrition significantly increased apoplastic pH at distinct interveinal sites (pH >/= 6.3) and was confined to about 10% of the whole interveinal leaf apoplast. These apoplastic pH increases presumably derive from NO(3)(-)/proton cotransport and are supposed to be related to growing cells of a young leaf; they were not found in the case of sole NH(4)(+) or NH(4)NO(3) nutrition. Complementary to pH measurements, the formation of Fe(2+)-ferrozine from Fe(3+)-citrate was monitored in the xylem apoplast of intact leaves in the presence of buffers at different xylem apoplastic pH by means of image analysis. This analysis revealed that Fe(3+) reduction increased with decreasing apoplastic pH, with the highest rates at around pH 5. 0. In analogy to the monitoring of Fe(3+) reduction in the leaf xylem, we suggest that under alkaline nutritional conditions at interveinal microsites of increased apoplastic pH, Fe(3+) reduction is depressed, inducing leaf chlorosis. The apoplastic pH in the xylem vessels remained low in the still-green veins of leaves with intercostal chlorosis.  相似文献   

7.
Novel water‐soluble green fluorescent carbon nanodots (CNs) using methacrylic acid and m‐phenylenediamine as precursors were first synthesized using a one‐pot hydrothermal method. Red fluorescent lanthanide complexes were prepared using lanthanide ion Eu3+ and pyridine‐2,6‐dicarboxylic acid. The optical properties of CNs were characterized using ultraviolet visible (UV) spectra and fluorescence spectra, microscopic morphology was characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the elemental composition was characterized using Fourier transform‐infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectra (XPS). The fluorescence spectra of the lanthanide complexes were also measured. A simple strategy was developed to prepare UV light‐tunable fluorescent inks and polymer hydrogels films based on CNs and lanthanide complexes. The fluorescent inks and polymer hydrogels films could be repeatedly switched between green and red fluorescence. The change of color depended on luminescence of the CNs and the lanthanide complexes under 254 and 365 nm UV light, respectively. The UV light‐tunable fluorescent inks and polymer hydrogels films could enhance its anti‐counterfeiting function for data and information.  相似文献   

8.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

9.
A new poly(amidoamine) dendrimer from second generation whose periphery comprises sixteen fluorescent 4-N,N-dimethylaminoethylamino-1,8-naphthalimide units has been synthesized and characterized. In DMF, the dendrimer shows sensitivity to the presence of Cu(2+), Fe(3+) and protons. The changes in the fluorescence intensity of the material are in opposite directions if acids or metals are present. Fluorescence enhancements (FE from 5 to 9 depending on solvent) are recorded when the photoinduced electron transfer (PET) originating from the donating amine to the electron accepting naphthalimide is inhibited by the protonation of the N,N-dimethylamino groups. In the case of Cu(2+) cations, a fluorescence quenching (FQ of 6) is first observed, followed by fluorescence partial restoration. In the Fe(3+) case, the same behaviour is observed with a final FE of 2. The successive complexations of these cations by the dendrimer core and by the external rim of the dendrimer may explain the results.  相似文献   

10.
Quantitative measurements of the effects of ions on fluorescent antibody reactions have not been reported in the literature. Data in this report show the effects of ranges of H(+), phosphate, Mg(2+), and Ca(2+) molarities on antigen-antibody coupling during an indirect fluorescent antibody (IFA) reaction for Clostridium botulinum type E. These effects were quantified in two ways: (i) by microphotometric measurement of cell fluorescence intensity; and (ii) by visual estimation of cell fluorescence intensity on long glass strips treated with antibody in ion gradients. Optimal pH for the first part of the reaction (coupling of rabbit antibody to cells) was 7.25, and optimum in the second part (coupling of tracer globulin to the rabbit globulin) was pH 7.37. Running the reaction as little as 0.10 to 0.15 pH units off from the optima considerably reduced fluorescence intensity. Sodium phosphate buffer up to 0.1 M did not significantly affect either portion of the reaction. Ca(2+) and Mg(2+) showed no effect on the first part of the reaction. These results support the use of higher-strength phosphate buffer and indicate for the first time that IFA reactions may have two independent, narrow pH optima.  相似文献   

11.
A novel selective and sensitive fluorescence ‘on-off-on’ probe based on tetraphenylethylene (TPE) motif for sequential recognition of Fe3+ and Hg2+ in water has been developed. Especially the complex 6-Fe3+ could behave as a ‘turn on’ fluorescent sensor over a wide-range pH value for detection of Hg2+. The selectivity of this complex for Hg2+ over other heavy and transition metal ions is excellent, and its sensitivity for Hg2+ is at 2 ppb in water.  相似文献   

12.
The present study reports the development of a new 1,8‐naphthalimide‐based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52–9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO–HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence ‘turn off’ mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 106 M–1 and 4.67 × 10–8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples.  相似文献   

13.
An amperometric bacterial sensor with current response to Fe(2+) and S(2)O(3)(2-) ions has been designed by immobilizing an acidophilic biomass of Acidithiobacillus ferrooxidans on a multi disk flat-front oxygen probe. The bacterial layer was located between the oxygen probe and a membrane of cellulose. A filtration technique was used to yield the bacterial membranes having reproducible activity. The decrease of O(2) flow across the bacterial layer is proportional to the concentration of the dosed species. The dynamic range appeared to be linear for the Fe(2+) ions up to 2.5 mmol L(-1) with a detection limit of 9 x 10(-7) mol L(-1) and a sensitivity of 0.25 A L mol(-1). The response of the biosensor is 84 s for a determination of 2 x 10(-4) mol L(-1) Fe(2+). Optimizing the Fe(2+) determination by A. ferrooxidans sensor was carried out owing to Design of Experiments (DOE) methodology and empirical modelling. The optimal response was thus obtained for a pH of 3.4, at 35 degrees C under 290 rpm solution stirring. S(2)O(3)(2-) concentration was determined at pH 4.7, so avoiding its decomposition. The concentration range was linear up to 0.6 mmol L(-1). Sensitivity was 0.20 A L mol(-1) with a response time of 207 s for a 2 x 10(-4) mol L(-1) S(2)O(3)(2-) concentration.  相似文献   

14.
Shutes A  Phillips RA  Corrie JE  Webb MR 《Biochemistry》2002,41(11):3828-3835
Novel guanine nucleotide analogues have been used to investigate the role of Mg(2+) in nucleotide release and binding with the small G protein rac. The fluorescent analogues have 7-(ethylamino)-8-bromocoumarin-3-carboxylic acid attached to the 3'-position of the ribose via an ethylenediamine linker. This modification has only small effects on the interaction with rac. There are large fluorescence changes on binding of the triphosphate to rac, on hydrolysis, and then on release of the diphosphate. Furthermore, the fluorescence is sensitive to the presence of Mg(2+) in the active site. Using this signal, it was shown that, for a variety of conditions, the nucleotides dissociate by a two-step mechanism. Mg(2+) is released first followed by the nucleotide. With the diphosphate, Mg(2+) is fast and nucleotide release slow. For the fluorescent GMPPNP analogue, the rate of dissociation is limited by Mg(2+) release. In the latter case, Mg(2+) binds tightly with a K(d) of 61 nM, whereas for the diphosphate the K(d) is 11 microM (30 degrees C, pH 7.6).  相似文献   

15.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.  相似文献   

16.
Aggregation of alpha-synuclein is a key event in several neurodegenerative diseases, including Parkinson disease. Recent findings suggest that oligomers represent the principal toxic aggregate species. Using confocal single-molecule fluorescence techniques, such as scanning for intensely fluorescent targets (SIFT) and atomic force microscopy, we monitored alpha-synuclein oligomer formation at the single particle level. Organic solvents were used to trigger aggregation, which resulted in small oligomers ("intermediate I"). Under these conditions, Fe(3+) at low micromolar concentrations dramatically increased aggregation and induced formation of larger oligomers ("intermediate II"). Both oligomer species were on-pathway to amyloid fibrils and could seed amyloid formation. Notably, only Fe(3+)-induced oligomers were SDS-resistant and could form ion-permeable pores in a planar lipid bilayer, which were inhibited by the oligomer-specific A11 antibody. Moreover, baicalein and N'-benzylidene-benzohydrazide derivatives inhibited oligomer formation. Baicalein also inhibited alpha-synuclein-dependent toxicity in neuronal cells. Our results may provide a potential disease mechanism regarding the role of ferric iron and of toxic oligomer species in Parkinson diseases. Moreover, scanning for intensely fluorescent targets allows high throughput screening for aggregation inhibitors and may provide new approaches for drug development and therapy.  相似文献   

17.
Three pyoverdines, Pf-A, Pf-B, and Pf-C, were purified with copper-chelate Sepharose and Sephadex G-15 columns from Pseudomonas fluorescens 2-79, and the yields (per 100 ml of culture supernatant) were 2.8, 21.6, and 3.2 mg, respectively. The absorption and fluorescence spectra of these pyoverdines were strongly pH dependent. Characteristic changes in the maximal absorbance wavelengths were observed when Fe(sup3+) or Cu(sup2+) was added. The addition of Cu(sup2+) shifted the pyoverdine Pf-B absorbance spectrum so that it exhibited a single peak at 410 nm but did not give rise to a new absorbance maximum at approximately 460 nm, which appeared when Fe(sup3+) was added. Fluorescence quenching experiments revealed that the forward reaction rate constant with pyoverdines was much higher with Cu(sup2+) (10(sup4) to 10(sup5) M(sup-1) s(sup-1)) than with Fe(sup3+) (10(sup2) M(sup-1) s(sup-1)). However, Cu(sup2+)-pyoverdine complexes were completely dissociated by EDTA at a low concentration (0.1 mM), while the level of Fe(sup3+)-pyoverdine complex dissociation at the same EDTA concentration was relatively low. The dissociation of Fe(sup3+)-pyoverdine complexes was EDTA concentration dependent. Formation of free pyoverdine was observed when the three types of Fe(sup3+)-pyoverdine complexes were incubated separately with P. fluorescens 2-79 cells, thus demonstrating that pyoverdines Pf-A, Pf-B, and Pf-C mediate iron transport.  相似文献   

18.
In this study emission and synchronous-scan fluorescence spectroscopy have been used to investigate the interaction of the class A (oxygen seeking 'hard acid') metal Al(3+), with Suwannee River fulvic acid (SRFA), as well as competition between Al(3+) and several other metal ions (Ca(2+), Mg(2+), Cu(2+), Pd(2+), La(3+), Tb(3+) and Fe(3+)) for binding sites on SRFA. Of the four metal ions possessing very similar (and relatively low) ionic indices (Ca(2+), Mg(2+), Cu(2+) and Pd(2+)) only the latter two paramagnetic ions significantly quenched SRFA fluorescence emission intensity. Of the four metal ions possessing very similar (and relatively low) covalent indices (Ca(2+), Mg(2+), La(3+) and Tb(3+)) only the last paramagnetic ion (Tb(3+)) significantly quenched SRFA fluorescence. None of these metals was able to significantly compete with SRFA-bound Al(3+).Fe(3+), which differs substantially from all of the other metals examined in this study in that it possesses a relatively high ionic index (but not as high as Al(3+)) and a relatively low covalent index (but not as low as Al(3+)), was able not only to quench SRFA fluorescence but also to compete (at least to some extent) with SRFA-bound Al(3+). Synchronous-scan fluorescence SRFA spectra taken in the absence and presence of Fe(3+) and/or Al(3+) support the view that these two metal ions can compete for sites on SRFA. The results of these fluorescence experiments further confirm the Al(3+), and metal ions that have electronic properties somewhat similar to Al(3+) (such as Fe(3+)) are somewhat unique in their ability to interact strongly with binding sites on fulvic acids.  相似文献   

19.
The kinetics of ferrous iron oxidation by Leptospirillum ferriphilum (L. ferriphilum) dominated culture was studied in the concentration range of 0.1-20 g Fe(2+)/L and the effect of ferric iron (0-60 g Fe(3+)/L) on Fe(2+) oxidation was investigated at pH below one. Denaturing gradient gel electrophoresis of PCR amplified 16S rRNA genes followed by partial sequencing confirmed that the bacterial community was dominated by L. ferriphilum. In batch assays, Fe(2+) oxidation started without lag phase and the oxidation was completed within 1 to 60 h depending on the initial Fe(2+) concentration. The specific Fe(2+) oxidation rates increased up to around 4 g/L and started to decrease at above 4 g/L. This implies substrate inhibition of Fe(2+) oxidation at higher concentrations. Haldane equation fitted the experimental data reasonably well (R(2) = 0.90). The maximum specific oxidation rate (q(m)) was 2.4 mg/mg VS . h, and the values of the half saturation (K(s)) and self inhibition constants (K(i)) were 413 and 8,650 mg/L, respectively. Fe(2+) oxidation was competitively inhibited by Fe(3+) and the competitive inhibition constant (K(ii)) was 830 mg/L. The time required to reach threshold Fe(2+) concentration was around 1 day and 2.3 days with initial Fe(3+) concentration of 5 and 60 g/L, respectively. The threshold Fe(2+) concentration, below which no further Fe(2+) oxidation occurred, linearly increased with increasing initial Fe(2+) and Fe(3+) concentrations. Fe(2+) oxidation proceeds by L. ferriphilum dominated culture at pH below 1 even in the presence of 60 g Fe(3+)/L. This indicates potential of using and biologically regenerating concentrated Fe(3+) sulfate solutions required, for example, in indirect tank leaching of ore concentrates.  相似文献   

20.
In an effort to understand the role of environmental metal ions in the interaction of charged pesticides with humic substances, a fluorescence study of the interaction of the widely-used herbicide 2,4-dichlorophenoxyacetic acid (DCPAA) with Al(3+) and Pd(2+) and Suwannee River fulvic acid (SRFA) was undertaken. Initial fluorescence experiments on binary solutions clearly indicated that both Al(3+) and Pd(2+) strongly interact with both SRFA and DCPAA when alone in solution with the metal ion. Titrations of SRFA with Al(3+) at pH values of 4.0, 3.0 and 2.0 revealed decreased degrees of fluorescence emission enhancement (at lambda(emission, max)=424 nm) with decreasing pH, consistent with the expected loss of rigidity in the SRFA-Al(3+) complexes formed as pH is lowered. In contrast, titrations of SRFA with Pd(2+) at all of these pH values resulted in significant fluorescence quenching. Al(3+) additions to solutions of DCPAA at pH values above the pK(a) (2.64) of DCPAA resulted primarily in significant changes in the wavelength of maximum emission (without significant quenching or enhancement of emission intensity), while Pd(2+) additions to DCPAA solutions resulted primarily in very significant fluorescence quenching. The DCPAA fluorescence results strongly support the formation of an Al(3+)-DCPAA complex at pH values above the pK(a) of DCPAA. The fluorescence results obtained for solutions of Pd(2+) and DCPAA are best explained by a collisional quenching mechanism, that is, energy transfer from excited DCPAA molecules to Pd(2+) following the collision of these two species in solution. Excitation-emission matrix plots obtained on ternary solutions (at environmentally-relevant pH 4.0) containing SRFA, DCPAA and metal ions (i.e., either Al(3+) or Pd(2+)) provides evidence (especially for systems containing Al(3+)) for the existence of ternary complexes between fulvic acid species, the herbicide DCPAA and metal ion, suggesting (at least at pH 4.0, where the predominant DCPAA species is negatively-charged) that metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号