首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant resistance to pathogens requires the activation of complex metabolic pathways in the infected cells, aimed at recognizing pathogen presence and hindering its propagation within plant tissues. In spite of this both compatible and incompatible responses induce alterations in plant metabolism, only in the latter the plant is able to efficiently block pathogen penetration without suffering excessive damage. One of the most studied incompatible responses is based on the hypersensitive response (HR), in which cells surrounding the site of pathogen penetration switch on genes encoding for phytoalexin synthesis and other pathogenesis related proteins before activating programmed cell death (PCD). The production of reactive oxygen species (ROS) is a key event in HR. Several enzymatic systems have been proposed to be responsible for the oxidative burst characterizing HR. In this review, the involvement of antioxidant redox systems, in particular those related to ascorbate (ASC) and glutathione (GSH), in activating both compatible and incompatible plant responses is analysed. Increasing lines of evidence indicate that alterations in the levels and/or redox state of ASC and/or GSH, as well as in the activity of their redox enzymes, occur during the HR programme. These alterations do not seem to be a mere consequence of the oxidative stress induced by the massive ROS production, but they are induced as part of the transduction pathways triggering defence responses and PCD. The possibility that ASC and GSH systems are links in a redox signalling chain activating defence strategies is also discussed.  相似文献   

3.
4.
The incompatible interaction between the rice cultivar Manikpukha and the rice stem nematode Ditylenchus angustus has been reported recently. This research focuses on the underlying mechanisms of resistance in Manikpukha. Invasion, post‐infection development and reproduction of D. angustus were compared in compatible and incompatible interactions to identify the stage in which resistance occurs. The results indicate that resistance in Manikpukha is associated with reduced development and reproduction, implying that resistance acts post‐invasion. We studied the possible involvement of three classical defence hormones, salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), in response to infection in a compatible interaction using biosynthesis/signalling‐deficient transgenic rice lines. All three hormones appear to have an influence on the basal defence of Nipponbare against the stem nematode. Although hormone application increases basal defences, expression studies and hormone analyses after nematode infection in Manikpukha did not show a clear involvement of the hormone defense pathways for SA, ET and JA. However, it seems that OsPAL1 plays a pivotal role in resistance, indicating that the phenylpropanoid pathway and its products might be key players in the incompatible interaction. Lignin measurement showed that, although basal levels are similar, Manikpukha had a significantly higher lignin content on nematode infection, whereas it was decreased in the susceptible cultivar. The results presented here show that SA, ET and JA are involved in basal defences, but the resistance of Manikpukha against D. angustus probably relies on products of the phenylpropanoid pathway.  相似文献   

5.
6.
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in plant environmental responses. Arabidopsis thaliana NADPH oxidase AtRbohF-mediated ROS-production is involved in abiotic stress responses. Because overproduction of ROS is highly toxic to cells, the activity of AtRbohF needs to be tightly regulated in response to diverse stimuli. The ROS-producing activity of AtRbohF is activated by Ca2 + and protein phosphorylation, but other regulatory factors for AtRbohF are mostly unknown. In this study, we screened for proteins that interact with the N-terminal cytosolic region of AtRbohF by a yeast two-hybrid screen, and isolated AtSRC2, an A. thaliana homolog of SRC2 (soybean gene regulated by cold-2). A co-immunoprecipitation assay revealed that AtSRC2 interacts with the N-terminal region of AtRbohF in plant cells. Intracellular localization of GFP-tagged AtSRC2 was partially overlapped with that of GFP-tagged AtRbohF at the cell periphery. Co-expression of AtSRC2 enhanced the Ca2 +-dependent ROS-producing activity of AtRbohF in HEK293T cells, but did not affect its phosphorylation-dependent activation. Low-temperature treatment induced expression of the AtSRC2 gene in Arabidopsis roots in proportion to levels of ROS production that was partially dependent on AtRbohF. Our findings suggest that AtSRC2 is a novel activator of Ca2 +-dependent AtRbohF-mediated ROS production and may play a role in cold responses.  相似文献   

7.
8.
9.
10.
The establishment of a plant-pathogen interaction involves changes in gene expressions in both organisms. To isolate Helianthus annuus genes whose expression is induced during processes of resistance to Plasmopara halstedii, a comparison of the expression pattern of healthy sunflowers was made with sunflowers infected with 2 races of P. halstedii, either virulent or avirulent, using differential display of mRNA. A full-length cDNA, HaAC1, representing a sunflower gene whose expression is enhanced during early stages of the incompatible interaction, was isolated. Different timing of RNA accumulation is observed between compatible and incompatible combinations. Sequence analysis and database search revealed significant homology with auxin-induced genes from plants. The expression of this gene, is also induced after treatment with 2,4-dichlorophenoxyacetic acid (2,4-D), salicylic acid (SA) and wounding.  相似文献   

11.
12.
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.  相似文献   

13.
It is reported here that salicylic acid (SA) is rapidly taken up by Arabidopsis cells, and its uptake is accompanied by media alkalization and cytosolic acidification, and it is inhibited by the ionophore nigericin, suggesting that its import is linked with that of H+ and driven by a proton gradient. Such import and accumulation declined sharply within a narrow physiological pH range (pH 5.7-6.1), corresponding to a reduction in the [H+] of the media from 1.99 micromol l(-1) to 0.79 micromol l(-1). Following the initial uptake, SA was exported back into the media as free SA against a continued [H+]-dependent import. Since the uptake and accumulation of SA declines sharply within a narrow pH range and cell wall alkalization is an early response during incompatible plant/pathogen interactions, the bacterial elicitor harpin(Pss) was used to investigate how SA transport may be modulated during defence responses. Harpin induced a rapid and sustained alkalization of the cell suspension media, reaching the critical pH (pH 5.9-6.1) at which SA import is inhibited at c. 60 min. Such media alkalization corresponded with a reduction in the SA associated with cells co-treated with harpin, and an inhibition of SA uptake in cells pretreated with harpin. Scavengers of ROS, or compounds which generate H2O2 or NO had little effect on the import or net export of SA, suggesting that media alkalization induced by harpin is sufficient to modulate the kinetics of SA transport.  相似文献   

14.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

15.
16.
We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the approximately 8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system.  相似文献   

17.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

18.
19.
20.
DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号