首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predictions for the adsorption of mixtures of water and methanol in zeolite NaA are reported. The pressure dependence of the adsorption properties such as equilibrium amounts of adsorption and isosteric heats of adsorption are calculated at 378 K by molecular simulations using effective pair potential models. These data are also determined for the adsorption from liquid mixtures. The models predict selectivity inversion in the investigated range of pressure. The change in adsorption ratios can partly be explained by the structural characteristics of the system.  相似文献   

2.
Abstract

We investigate the selective adsorption of xenon, argon, and methane in zeolite NaA by applying the grand canonical ensemble Monte Carlo simulation technique to an adsorbed binary mixture and to two reference systems: i) an adsorbed single component system and ii) a bulk mixture. We define and calculate selectivities and excess densities due to i) mixing and ii) adsorption in terms of differences between the binary adsorbed system and these reference systems. We observe that xenon selectively adsorbs in both xenon-argon and xenon-methane mixtures at low chemical potential (low pressure) due to its greater energetic interaction with the zeolite. However, a reversal in selectivity occurs at higher chemical potential in both of these mixtures. This is due in large part to the greater efficiency in which the smaller component “packs” in the pore as compared to the bulk. We show that the crossover in selectivity occurs at a lower chemical potential for a mixture where one component can occupy regions of the porespace inaccessible to the other. We suggest that this crossover in selectivity may be a general feature of microporous adsorption.  相似文献   

3.
Weanling Landrace X Yorkshire swine were fed a basal diet or a diet containing 3% clinoptilolite (a natural zeolite) with or without 150 ppm CdCl2 or 3% zeolite NaA (a synthetic zeolite) with or without 150 ppm CdCl2 for 31 days. Hematocrit and hemoglobin were depressed significantly in animals fed Cd in the absence of zeolites, but not in their presence. Liver Cd concentration was increased dramatically by added dietary Cd but was significantly lower in animals fed clinoptilolite with Cd than in those fed Cd alone (11.4 vs 16.5 ppm). Liver Fe and Zn were decreased by dietary Cd; liver Fe was not affected significantly by clinoptilolite or zeolite NaA, but liver Zn was increased by zeolite NaA. Kidney dry matter, Zn, and Cd concentrations were increased by dietary Cd; neither clinoptilolite nor zeolite NaA affected kidney Cd concentration. Zeolite NaA increased kidney dry matter both in the presence and in the absence of dietary Cd. Plasma urea-N, K, Na, and Mg were unaffected by Cd or by either zeolite. The data illustrate the different effects of dietary clinoptilolite compared with zeolite NaA on blood plasma, liver, and kidney concentrations of minerals and provide evidence that both zeolites offer some protection against Cd-induced Fe-deficiency anemia; the magnitude of this protection and the effects of each zeolite on tissue concentrations of Cd and other materials need further quantification.  相似文献   

4.
The graphics software package Ribbons1 is used to display isodensity surfaces of Xe atoms adsorbed in the alpha cage of zeolite NaA. The location, size, and shape of the adsorption sites are highly dependent on the loading and the crystal cation content. When the zeolite has a high number of cations, ellipsoidal sites arrange in a cuboctahedron. When the zeolite has fewer cations, cone-shaped sites arrange in an octahedron at low loading, but at high loading the sites become ellipsoidal and new sites form at cuboctahedral positions. The effect of the nature of the adsorption site on the development of a universal adsorption model is discussed.  相似文献   

5.
Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.  相似文献   

6.
Grand canonical Monte Carlo and equilibrium molecular dynamics simulations were used to assess the performance of an rht-type metal–organic framework (MOF), Cu-TDPAT, in adsorption-based and membrane-based separation of CH4/H2, CO2/CH4 and CO2/H2 mixtures. Adsorption isotherms and self-diffusivities of pure gases and binary gas mixtures in Cu-TDPAT were computed using detailed molecular simulations. Several properties of Cu-TDPAT such as adsorption selectivity, working capacity, diffusion selectivity, gas permeability and permeation selectivity were computed and compared with well-known zeolites and MOFs. Results showed that Cu-TDPAT is a very promising adsorbent and membrane material especially for separation of CO2 and it can outperform traditional zeolites and MOFs such as DDR, MFI, CuBTC, IRMOF-1 in adsorption-based CO2/CH4 and CO2/H2 separations.  相似文献   

7.
Abstract

Grand Ensemble Monte-Carlo simulations of adsorption of argon and nitrogen in silicalite have been performed using a new adsorbate/zeolite potential function. In both cases, a good agreement with zero coverage data (Henry law constant and isosteric heat of adsorption) has been obtained. For argon, the simulated isotherm at 77 K exhibits the experimentally observed step. This is attributed to an in site/off-site phase transition of the adsorbed phase. The calculated neutron diffraction spectra are in reasonable agreement with those obtained experimentally. Furthermore, we suggest, in light of recent 40Ar diffraction experiments of Tosi-Pellenq and Coulomb [18,44], that the shift in pressure between the simulated and the experimental isotherms corresponds to changes in the zeolite structure accompanied with the adsorbate phase transition itself. For nitrogen, only the first of the two experimentally observed steps is reproduced in the simulation. This step corresponds to an ordering of the adsorbed phase. The fact that the second step is missing in the simulated isotherm supports the hypothesis of a distortion of the zeolite framework under the stress of the adsorbed fluid at high loading.  相似文献   

8.
Despite the sizeable and growing body of research on polymers of intrinsic microporosity (PIMs), a greater understanding of the relationship between the monomer, polymer–polymer and polymer–gas interaction is of significant interest. Methane (CH4), carbon dioxide (CO2), oxygen (O2) and nitrogen (N2) adsorption isotherms at 20°C and up to 20 bar obtained from grand canonical Monte Carlo simulations are presented for PIM-1, PIM-1c, PIM-1n and PIM-1f. The new proposed structure, PIM-1f, is presented and characterised by geometric accessible surface area, pore size distribution, radial distribution function, X-ray scattering and gas adsorption isotherms. PIM-1f increased the geometric surface area when compared with PIM-1; however, the higher system density in combination with the lack of strong adsorption sites yielded the least effective adsorbent for the gases analysed in this study. The gas solubility and ideal solubility selectivity values are also presented and compared with available experimental data for all gases and several gas mixtures illustrating that PIM-1c is the most effective functionality studied for adsorbing these four gases. The conclusions made here are projected to facilitate the design of a material that combines the higher surface area of PIM-1f with the high adsorption capacity of PIM-1c, which will improve the performance of future PIMs.  相似文献   

9.
We present a novel molecular dynamics-based simulation technique for investigating gas transport through membranes. In our simulations, the main control parameters are the partial pressure for the components on the input side of the membrane and the total pressure on the output side. The essential point of our scheme is that this pressure control should be realised by adjusting the particle numbers in the input and output side control cells indirectly. Although this perturbation is applied sufficiently far from the membrane, the bulk-phase properties are well controlled in a simulation cell of common size. Numerical results are given for silicalite-1 membrane with permeating CH4, CO2, H2 and N2 gases as well as with binary mixtures of CO2 with the other three components. To describe interactions between particles, we used the simple shifted and cut Lennard–Jones potential with parameters available in the literature. It is expected that the proposed technique can be applied to several other types of membranes and transported fluids in order to support the development of a deeper understanding of separation processes.  相似文献   

10.
We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.  相似文献   

11.
Despite the wide use of the real adsorbed solution theory to predict multicomponent adsorption equilibrium, the models used for the adsorbed phase activity coefficients are usually borrowed from the gas–liquid phase equilibria. In this work, the accuracy of the Wilson and NRTL models for evaluating adsorbed phase activity coefficients is tested using a 2D-lattice model. An accurate model for adsorbed-phase activity coefficients should have no problem in fitting adsorption data obtained using this simple lattice model. The results, however, show that the commonly used Wilson and NRTL models cannot describe the adsorbed phase activity coefficients for slightly non-ideal to strong non-ideal mixtures. Therefore, until new models for adsorbed phase activity coefficients are developed, we should use existing models for liquids with care. In the second part of this work, the use of Monte Carlo simulations on a segregated 2D-lattice model, for predicting adsorption of mixtures is investigated. The segregated model assumes that the competition for adsorption occurs at isolated adsorption sites, and that the molecules from each adsorption site interact with the bulk phase independently. Two binary mixtures in two adsorbent materials were used as case studies for testing the predictions of the segregated 2D-lattice model: the binary system CO2–N2 in the hypothetical pure silica zeolite PCOD8200029, with isolated adsorption sites and normal preference for adsorption, and the binary system CO2–C3H8 in pure silica mordenite (MOR), with isolated adsorption sites and inverse site preference. The segregated 2D-lattice model provides accurate predictions for the system CO2–N2 in PCOD8200029 but fails in predicting the adsorption behaviour of CO2–C3H8 in pure silica MOR. The predictions of the segregated ideal adsorbed solution theory model are superior to those of the 2D-lattice model.  相似文献   

12.
在水热条件下合成纳米δ-Bi2O3负载多孔沸石球填料(Bi-PZSF),研究其对水体中Cr(Ⅵ)的吸附性能(包括等温吸附、吸附动力学和吸附稳定性)以及溶解氧、pH等因素对吸附过程的影响及其吸附机理。结果表明:朗格缪尔模型和准二级动力学模型对实验结果具有良好的拟合度,在中性条件下,水体中的溶解氧含量对吸附速率影响较小,Bi-PZSF的最大吸附量为955.69 mg·kg^-1,比天然沸石的吸附量提升了近120倍;Bi-PZSF在NO3^-和SO4^2-的溶液中呈现出较强的选择吸收Cr(Ⅵ)能力,Cr(Ⅵ)去除率均在97%以上;同时,Bi-PZSF在吸附Cr(Ⅵ)后表现出高稳定性。Cr(Ⅵ)的去除主要是通过与附着在Bi-PZSF上的纳米δ-Bi2O3的表面羟基交换完成的。  相似文献   

13.
Adsorption of paracresol and water into the silicalite-1 (MFI) zeolite has been investigated using canonical and grand-canonical Monte Carlo simulations. The most stable sites of adsorption of paracresol are found to be located at the channel intersections. Grand-canonical simulations have shown that at low loading, water molecules adsorb preferably at the vicinity of paracresol molecules, whereas they are also located in the sinusoidal channels as the loading increases. In order to explain the experimental adsorption isotherm observed for the coadsorption of water and paracresol in the MFI zeolite we propose a new concept of apparent adsorption enthalpy that varies with the concentration of the solution. The mathematical expression for the apparent enthalpy is introduced in an adsorption isotherm model. We shall refer to this theoretical isotherm as a non-langmuirian isotherm. The non-linear expression for the apparent adsorption enthalpy accounts for a variable accessibility of the sites of adsorption with respect to the concentration of the solution. Figure Co-adsorption of paracresol and water in silicalite-1 zeolite and comparison between experimental and modelled adsorption isotherms.  相似文献   

14.
Abstract

Grand canonical Monte Carlo simulations have been performed for binary adsorption of Lennard-Jones molecules with point multipole moments in zeolite cavities of type X. Fluid-solid electrostatic interactions were taken into account. Phase diagrams and total coverage were calculated for three binaries and compared with experimental measurements. MC simulations gave good agreement with experiment for two mixtures (C2H4-CO2 and CO2-CH4) but there were discrepancies between simulation and experiment for the system i-C4H10-C2H4. The dependence of excess Gibbs free energy on the composition and pressure was studied. Negative deviations from ideality are due to energetic heterogeneity and size effects. Unlike liquid-vapor equilibrium, deviations from the Lorentz-Berthelot mixing rules for the adsorbates have little effect upon the phase behavior. Density distributions show that the components compete for the high energy sites inside the cavity; depending on its relative strength of adsorption, one component may be excluded from such positions (CH4 in CO2-CH4), or the two species may share sites inside the cavity (C2H4-CO2).  相似文献   

15.
The dynamics of adsorption and desorption of gaseous molecules on the external surface of a crystal and a membrane of zeolite silicate-1 is investigated by molecular dynamics simulation. The gases are argon and three hydrocarbons, n-heptane, n-butane and ethylene. The sticking coefficient and the desorption coefficient are calculated for different coverages. The results clearly show that the desorption coefficients increase with the coverage contrary to the sticking coefficients. To have a better insight in the process, the desorption and adsorption time are computed, they are very similar and they show an increase with the coverage except for n-heptane which exhibit a specific decreasing behaviour at high loading.  相似文献   

16.
Abstract

The air separation properties of zeolite types A, X, and Y have been studied using grand canonical Monte Carlo simulations of nitrogen, oxygen, and argon adsorbed in these zeolite lattices. Nitrogen is adsorbed preferentially due to the quadrupole-ion electrostatic interactions with the extra framework cations. The localization of adsorption sites for nitrogen near cations and the more diffuse distributions of oxygen and argon within zeolite cavities are clearly illustrated. Predicted nitrogen/oxygen selectivity for 5A from simulations is in good agreement with that determined experimentally. The effect of the calcium-sodium ion exchange on the predicted nitrogen/oxygen selectivity is examined, and is shown to be sensitive to the magnitude of the charges assigned to the extra framework cations.  相似文献   

17.
Molecular simulations were used to examine the adsorption of diatomic molecules (nitrogen and oxygen) and similarly sized gases (argon and methane) in pores with van der Waals diameters similar in size to the gas diameters. Idealised carbon nanotubes were used to model generic pores, to better understand the effect of pore diameter on guest adsorption in the absence of defects, specific adsorption sites, or variations in pore diameter that often complicate studies of gas adsorption in other porous materials. Molecular dynamics simulations of open nanotubes show that argon and methane are able to enter tubes whose diameters are slightly smaller than the gas diameters. Diatomic gases are able to enter tubes that are significantly smaller than their kinetic diameters with the molecular axis aligned parallel to the nanotube. The results indicate that size-selective adsorption of these gases is theoretically possible, although differences in pore diameters of only a few tenths of an Angstrom are required. Grand canonical Monte Carlo simulations of a 3.38 Å nanotube indicate significant uptake by argon and oxygen, but not nitrogen or methane. The adsorption of nitrogen and methane gradually increases as the nanotube diameter approaches 4.07 Å, and all gases fully saturate a 4.54 Å nanotube. Of the nanotubes studied, the largest adsorption enthalpy for any gas corresponds to the 4.54 Å nanotube, with significantly lower enthalpies seen in the 5.07 Å nanotube. These results suggest an ideal pore diameter for each gas based on the gas–pore van der Waals interaction energies. Trends in the ideal diameter correlate with the minimum tube diameter accessible to each gas.  相似文献   

18.
Cao  Hanfei  Ji  Yingchun  Zhou  Jingwei  Zhuang  Wei  Niu  Huanqing  Gao  Nan  Chen  Yong  Liu  Dong  Zhu  Chenjie  Chen  Xioachun  Ying  Hanjie  Wu  Jinglan 《Bioprocess and biosystems engineering》2019,42(9):1435-1445

Vanillin and syringaldehyde are widely used as flavoring and fragrance agents in the food products. The potential of a macro-mesoporous adsorption resin was assessed for separation of these binary mixtures. This work focuses on modeling of the competitive adsorption behaviors and exploration of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the separation mechanism was mainly contributed by hydrophobic effect. Subsequently, the competitive Langmuir isotherm model was used to fit the competitive adsorption isotherms. The pore diffusion coefficient was obtained by macropore diffusion model. Afterwards, a mathematical model was established to predict the breakthrough curves of the binary mixture at various operating conditions. The data and model presented are valuable for design and simulation of the continuous chromatographic separation process.

  相似文献   

19.
Abstract

The behavior of mixtures of associating and non-associating chains confined in pores with activated surfaces is studied by means of molecular simulation. The fluid molecules are modeled as a chain of four tangent Lennard-Jones spheres. Some of the chains have an additional associating square-well site placed in an end sphere. The activated surfaces of the slit pore are modeled via an integrated Lennard-Jones (10-4-3) potential with specific association sites protruding from the surface. We present Gibbs ensemble Monte Carlo simulation results for the partitioning of mixtures of chains in the bulk and confined phases for this particular model. The chain-wall association governs the adsorption behavior of the system. The preferential adsorption of associating chains is seen to strongly depend on temperature and pore width. Selectivities obtained are in the range of those seen in experiments of alkane-alkanol mixtures.  相似文献   

20.
Abstract

We have studied adsorption of xenon in a mixed (micro and meso) porosity silica controlled porous glass (CPG) by means of grand canonical Monte-Carlo (GCMC) simulation. A numerical sample of the CPG adsorbent has been obtained by using an off-lattice reconstruction method recently introduced to reproduce topological and morphological properties of correlated disordered mesoporous materials. The off-lattice functional of (100m2/g)-Vycor is applied to a simulation box containing silicon and oxygen atoms of orthorhombic silicalite zeolite with an homothetic reduction of factor 2.5 so as to obtain a CPG sample exhibiting both micro and meso porosity. A realistic surface chemistry is then obtained by saturating all oxygen dangling bonds in the mesoporosity with hydrogen. The Xe adsorption/desorption isotherms is calculated at 195 K. It is shown that in the particular case of xenon, the difference of energetics between zeolitic micropores and CPG mesopores lead to two distinct adsorption processes which occur consecutively. As a consequence, both the microporosity and the mesoporosity can be calculated independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号