首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modification of intracellular membrane structures for virus replication   总被引:1,自引:0,他引:1  
Viruses are intracellular parasites that use the host cell they infect to produce new infectious progeny. Distinct steps of the virus life cycle occur in association with the cytoskeleton or cytoplasmic membranes, which are often modified during infection. Plus-stranded RNA viruses induce membrane proliferations that support the replication of their genomes. Similarly, cytoplasmic replication of some DNA viruses occurs in association with modified cellular membranes. We describe how viruses modify intracellular membranes, highlight similarities between the structures that are induced by viruses of different families and discuss how these structures could be formed.  相似文献   

2.
Endoplasmic reticulum (ER) stress signaling is an adaptive cellular response to the loss of ER Ca(2+) homeostasis and/or the accumulation of misfolded, unassembled, or aggregated proteins in the ER lumen. ER stress-activated signaling pathways regulate protein synthesis initiation and can also trigger apoptosis through the ER-associated caspase 12. Viruses that utilize the host cell ER as an integral part of their life cycle would be predicted to cause some level of ER stress. Bovine viral diarrhea virus (BVDV) is a positive-stranded RNA virus of the Flaviviridae family. BVDV and related flaviviruses use the host ER as the primary site of envelope glycoprotein biogenesis, genomic replication, and particle assembly. We are using a cytopathic strain of BVDV (cpBVDV) that causes cellular apoptosis as a model system to determine how virus-induced ER stress contributes to pathogenesis. We show that, in a natural infection of MDBK cells, cpBVDV activates the ER transmembrane kinase PERK (PKR-like ER kinase) and causes hyperphosphorylation of the translation initiation factor eIF2 alpha, consistent with the induction of an ER stress response. Additionally, we show that initiation of cellular apoptosis correlates with downregulation of the antiapoptotic Bcl-2 protein, induced expression of caspase 12, and a decrease in intracellular glutathione levels. Defining the molecular stress pathways leading to cpBVDV-induced apoptosis provides the basis to study how other ER-tropic viruses, such as hepatitis C and B viruses, modulate the host cell ER stress response during the course of persistent infection.  相似文献   

3.
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.  相似文献   

4.
Viruses have evolved complex and dynamic interactions with their host cell. In recent years we have gained insight into the expanding roles for host lipids in the virus life cycle. In particular, viruses target lipid signaling, synthesis, and metabolism to remodel their host cells into an optimal environment for their replication. This review highlights examples from different viruses that illustrate the importance of these diverse virus-lipid interactions.  相似文献   

5.
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.The dependence of viruses on the host translation system imposes constraints that are central to virus biology and have led to specialized mechanisms and intricate regulatory interactions. Failure to translate viral mRNAs and to modulate host mRNA translation would have catastrophic effects on virus replication, spread, and evolution. Accordingly, a wide assortment of virus-encoded functions is dedicated to commandeering and controlling the cellular translation apparatus. Viral strategies to dominate the host translation machinery target the initiation, elongation, and termination steps and include mechanisms ranging from the manipulation of key eukaryotic translation factors to the evolution of specialized cis-acting elements that recruit ribosomes or modify genome-coding capacity. Because many of these strategies have likely been pirated from their hosts and because virus genetic systems can be manipulated with relative ease, the study of viruses has been a preeminent source of information on the mechanism and regulation of the protein synthesis machinery. In this article, we focus on select viruses that infect mammalian or plant cells and review the mechanisms they use to exploit and control the cellular protein synthesis machinery.  相似文献   

6.
7.
Viruses are intracellular parasites that rely upon the host cell machinery for their life cycle. Newly generated virus particles have to transmit their genomic information to uninfected cells/organisms. Viral entry is the process to gain access to viral replication sites within uninfected cells, a multistep course of events that starts with binding to target cells. Since viruses are simple in structure and composition and lack any locomotive capacity, viruses depend on hundreds of host cell proteins during entry. Most animal viruses take advantage of endocytosis to enter cells. Cell biological, morphological and biochemical studies, live cell imaging and systematic approaches have identified various new endocytic mechanisms besides clathrin‐mediated endocytosis, macropinocytosis and caveolar/lipid raft‐mediated endocytosis. Hence, studying virus entry has become ever more complex. This review provides a cell biological overview of the existing endocytic mechanisms and strategies used or potentially used by viruses to enter cells.  相似文献   

8.
Viruses frequently exploit host cell cycle machineries for their own benefit, often by targeting 'master switches' of cell cycle regulation. By doing so, they achieve maximum effect from minimal input. One such master switch is the anaphase promoting complex or cyclosome (APC/C), a multicomponent ubiquitin ligase and a dominant regulator of the cell cycle. A growing number of viruses have been shown to target the APC/C. Although differing strategies are employed, viral manipulation of the APC/C seems to serve a common purpose, namely, to create an environment supportive of viral replication. Here, the molecular mechanisms employed by these viruses are summarized and discussed.  相似文献   

9.
病毒通过与靶细胞表面的特异性受体结合,进而吸附、入侵靶细胞,劫持细胞的复制机器完成自身的复制周期。细胞受体作为病毒入侵宿主的门户,细胞受体的结构与功能及其介导病毒入侵的机制一直是病毒学研究的热点之一。对细胞受体的研究有助于了解病毒的致病机制并为病毒性疾病的防控提供科学依据。近年来,利用功能缺失性基因组学筛选病毒功能性受体的进展极大地拓展了人类对病毒入侵机制的认识和理解。目前,应用较为广泛的病毒功能性受体筛选策略包括RNA干扰技术、利用单倍体细胞系随机插入逆转录病毒致突变技术以及基于CRISPR/Cas9系统的新型编辑技术。本文系统介绍并比较了这三种病毒功能性受体筛选新策略,同时对其应用及优缺点进行了归纳总结,可为相关研究者提供一定的参考。  相似文献   

10.
11.
RNA viruses have rapidly evolving genomes which often allow cross-species transmission and frequently generate new virus variants with altered pathogenic properties. Therefore infections by RNA viruses are a major threat to human health. The infected host cell detects trace amounts of viral RNA and the last years have revealed common principles in the biochemical mechanisms leading to signal amplification that is required for mounting of a powerful antiviral response. Components of the RNA sensing and signaling machinery such as RIG-I-like proteins, MAVS and the inflammasome inducibly form large oligomers or even fibers that exhibit hallmarks of prions. Following a nucleation event triggered by detection of viral RNA, these energetically favorable and irreversible polymerization events trigger signaling cascades leading to the induction of antiviral and inflammatory responses, mediated by interferon and NF-κB pathways. Viruses have evolved sophisticated strategies to manipulate these host cell signaling pathways in order to ensure their replication. We will discuss at the examples of influenza and HTLV-1 viruses how a fascinating diversity of biochemical mechanisms is employed by viral proteins to control the NF-κB pathway at all levels.  相似文献   

12.
Viruses are obligate intracellular parasites and have to use the host cell machinery for their replication. Many viruses are able to divert different parts of this machinery to preferentially enhance virus replication at the expense of the cell. The mechanisms by which different viruses do this have, over the years, given us great insight into many cellular processes. Although we still know relatively little about how RNA is exported from the nucleus to the cytoplasm and how this process is regulated, retroviruses have already emerged as one of the most important model systems for these studies. This review will attempt to summarize what we have learnt from these viruses to date and what we hope to achieve in the near future.  相似文献   

13.
14.
虹彩病毒是一类大分子双链DNA病毒,目前证实可感染100多种水生动物,已给水产养殖业造成重大经济损失,同时也危及到野生动物种群的生物多样性及生态平衡。虹彩病毒在长期的病原与宿主相互作用及进化过程中发展形成了相当系统和完善的免疫逃逸策略,以逃避免疫攻击,完成在宿主体内的复制,以及种内和种间传播。综合归纳分析近年来国内外有关低等脊椎动物虹彩病毒免疫逃逸策略,以及宿主对这些病原的先天性免疫反应研究进展。  相似文献   

15.
Over the past decade, a family of host proteins known as suppressors of cytokine signaling (SOCS) have emerged as frequent targets of viral exploitation. Under physiologic circumstances, SOCS proteins negatively regulate inflammatory signaling pathways by facilitating ubiquitination and proteosomal degradation of pathway machinery. Their expression is tightly regulated to prevent excessive inflammation while maintaining protective antipathogenic responses. Numerous viruses, however, have developed mechanisms to induce robust host SOCS protein expression following infection, essentially "hijacking" SOCS function to promote virus survival. To date, SOCS proteins have been shown to inhibit protective antiviral signaling pathways, allowing viruses to evade the host immune response, and to ubiquitinate viral proteins, facilitating intracellular viral trafficking and progeny virus assembly. Importantly, manipulation of SOCS proteins not only facilitates progression of the viral life cycle but also powerfully shapes the presentation of viral disease. SOCS proteins can define host susceptibility to infection, contribute to peripheral disease manifestations such as immune dysfunction and cancer, and even modify the efficacy of therapeutic interventions. Looking toward the future, it is clear that a better understanding of the role of SOCS proteins in viral diseases will be essential in our struggle to modulate and even eliminate the pathogenic effects of viruses on the host.  相似文献   

16.
Sato Y  Tsurumi T 《PLoS pathogens》2010,6(12):e1001158
Productive replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. In response to the viral productive replication, host cells attempt to attenuate the S-phase cyclin-dependent kinase (CDK) activities to inhibit viral replication. However, accumulating evidence regarding interactions between viral factors and cellular signaling molecules indicate that viruses utilize them and selectively block the downstream signaling pathways that lead to attenuation of the high S-phase CDK activities required for viral replication. In this review, we describe the sophisticated strategy of Epstein-Barr virus to cancel such "noisy" host defense signals in order to hijack the cellular environment.  相似文献   

17.
Viruses physically and metabolically remodel the host cell to establish an optimal environment for their replication. Many of these processes involve the manipulation of lipid signaling, synthesis, and metabolism. An emerging theme is that these lipid-modifying pathways are also linked to innate antiviral responses and can be modulated to inhibit viral replication.  相似文献   

18.
Viruses have coevolved with their hosts, acquiring strategies to subvert host cellular pathways for effective viral replication and spread. Human cytomegalovirus (HCMV), a widely-spread β-herpesvirus, is a major cause of birth defects and opportunistic infections in HIV-1/AIDS patients. HCMV displays an intricate system-wide modulation of the human cell proteome. An impressive array of virus–host protein interactions occurs throughout the infection. To investigate the virus life cycle, proteomics has recently become a significant component of virology studies. Here, we review the mass spectrometry-based proteomics approaches used in HCMV studies, as well as their contribution to understanding the HCMV life cycle and the virus-induced changes to host cells. The importance of the biological insights gained from these studies clearly demonstrate the impact that proteomics has had and can continue to have on understanding HCMV biology and identifying new therapeutic targets.  相似文献   

19.
Influenza viruses continue to pose a severe threat worldwide, causing thousands of deaths and an enormous economic loss every year. The major problem in fighting influenza is the high genetic variability of the virus, resulting in the rapid formation of variants that escape the acquired immunity against previous virus strains, or have resistance to antiviral agents. Every virus depends on its host cell and, hence, cellular functions that are essential for viral replication might be suitable targets for antiviral therapy. As a result, intracellular signaling cascades induced by the virus, in particular mitogen-activated protein kinase pathways, have recently come into focus.  相似文献   

20.
Many viruses, with distinct replication strategies, activate DNA-damage response pathways, including the lentivirus human immunodeficiency virus (HIV) and the DNA viruses Epstein-Barr virus (EBV), herpes simplex virus 1, adenovirus and SV40. DNA-damage response pathways involving DNA-dependent protein kinase, ataxia-telengiectasia mutated (ATM) and 'ataxia-telengiectasia and Rad3-related' (ATR) have all been implicated. This review focuses on the effects of HIV and EBV replication on DNA repair pathways. It has been suggested that activation of cellular DNA repair and recombination enzymes is beneficial for viral replication, as illustrated by the ability of suppressors of the ATM and ATR family to inhibit HIV replication. However, activation of DNA-damage response pathways can also promote apoptosis. Viruses can tailor the cellular response by suppressing downstream signalling from DNA-damage sensors, as exemplified by EBV. New small-molecule inhibitors of the DNA-damage response pathways could therefore be of value to treat viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号