首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Tissue development requires the expression of a regulated subset of genes, and it is becoming clear that the process of alternative splicing also plays an important role in the production of necessary tissue-specific isoforms. However, only a few of these tissue-specific splicing factors in mammals have so far been discovered. One of these factors is the RNA-binding protein RBM24 which has been recently identified as a major regulator of alternative splicing in cardiac and skeletal muscle development. The RBM24 protein contains an RNA recognition motif (RRM) domain that presumably mediates the binding to target pre-mRNA required for regulation of the splicing patterns. Here we report 1H, 15N and 13C chemical shift assignments of the backbone and sidechain atoms for the RRM domain from human RBM24. Secondary chemical shift analysis and relaxation measurement confirm the canonical architecture of the RRM domain. The data will allow for atomic level studies aimed at understanding splicing regulation of target genes in heart and muscle development and investigation into a separate role of RBM24 in modulating mRNA stability of genes involved in the p53 tumor suppressor pathway.  相似文献   

5.
6.
RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.  相似文献   

7.
8.
9.
10.
SRSF2 (SC35) is a key player in the regulation of alternative splicing events and binds degenerated RNA sequences with similar affinity in nanomolar range. We have determined the solution structure of the SRSF2 RRM bound to the 5'-UCCAGU-3' and 5'-UGGAGU-3' RNA, both identified as SRSF2 binding sites in the HIV-1 tat exon 2. RNA recognition is achieved through a novel sandwich-like structure with both termini forming a positively charged cavity to accommodate the four central nucleotides. To bind both RNA sequences equally well, SRSF2 forms a nearly identical network of intermolecular interactions by simply flipping the bases of the two consecutive C or G nucleotides into either anti or syn conformation. We validate this unusual mode of RNA recognition functionally by in-vitro and in-vivo splicing assays and propose a 5'-SSNG-3' (S=C/G) high-affinity binding consensus sequence for SRSF2. In conclusion, in addition to describe for the first time the RNA recognition mode of SRSF2, we provide the precise consensus sequence to identify new putative binding sites for this splicing factor.  相似文献   

11.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.  相似文献   

12.
SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9-101). Compared with other members of the SR protein family, SRSF2 structure has a longer L3 loop region. The conserved aromatic residue in the RNP2 motif is absent in SRSF2. Calorimetric titration shows that the RNA sequence 5'AGCAGAGUA3' binds SRSF2 with a K(d) of 61 ± 1 nM and a 1:1 stoichiometry. NMR and mutagenesis experiments reveal that for SFSF2, the canonical β1 and β3 interactions are themselves not sufficient for effective RNA binding; the additional loop L3 is crucial for RNA complex formation. A comparison is made between the structures of SRSF2-RNA complex with other known RNA complexes of SR proteins. We conclude that interactions involving the L3 loop, N- and C-termini of the RRM domain are collectively important for determining selectivity between the protein and RNA.  相似文献   

13.
14.
15.
RBM4 participates in cell differentiation by regulating tissue-specific alternative pre-mRNA splicing. RBM4 also has been implicated in neurogenesis in the mouse embryonic brain. Using mouse embryonal carcinoma P19 cells as a neural differentiation model, we observed a temporal correlation between RBM4 expression and a change in splicing isoforms of Numb, a cell-fate determination gene. Knockdown of RBM4 affected the inclusion/exclusion of exons 3 and 9 of Numb in P19 cells. RBM4-deficient embryonic mouse brain also exhibited aberrant splicing of Numb pre-mRNA. Using a splicing reporter minigene assay, we demonstrated that RBM4 promoted exon 3 inclusion and exon 9 exclusion. Moreover, we found that RBM4 depletion reduced the expression of the proneural gene Mash1, and such reduction was reversed by an RBM4-induced Numb isoform containing exon 3 but lacking exon 9. Accordingly, induction of ectopic RBM4 expression in neuronal progenitor cells increased Mash1 expression and promoted cell differentiation. Finally, we found that RBM4 was also essential for neurite outgrowth from cortical neurons in vitro. Neurite outgrowth defects of RBM4-depleted neurons were rescued by RBM4-induced exon 9–lacking Numb isoforms. Therefore our findings indicate that RBM4 modulates exon selection of Numb to generate isoforms that promote neuronal cell differentiation and neurite outgrowth.  相似文献   

16.
SR proteins exhibit diverse functions ranging from their role in constitutive and alternative splicing, to virtually all aspects of mRNA metabolism. These findings have attracted growing interest in deciphering the regulatory mechanisms that control the tissue-specific expression of these SR proteins. In this study, we show that SRSF5 protein decreases drastically during erythroid cell differentiation, contrasting with a concomitant upregulation of SRSF5 mRNA level. Proteasome chemical inhibition provided strong evidence that endogenous SRSF5 protein, as well as protein deriving from stably transfected SRSF5 cDNA, are both targeted to proteolysis as the cells undergo terminal differentiation. Consistently, functional experiments show that overexpression of SRSF5 enhances a specific endogenous pre-mRNA splicing event in proliferating cells, but not in differentiating cells, due to proteasome-mediated targeting of both endogenous and transfection-derived SRSF5. Further investigation of the relationship between SRSF5 structure and its post-translation regulation and function, suggested that the RNA recognition motifs of SRSF5 are sufficient to activate pre-mRNA splicing, whereas proteasome-mediated proteolysis of SRSF5 requires the presence of the C-terminal RS domain of the protein. Phosphorylation of SR proteins is a key post-translation regulation that promotes their activity and subcellular availability. We here show that inhibition of the CDC2-like kinase (CLK) family and mutation of the AKT phosphorylation site Ser86 on SRSF5, have no effect on SRSF5 stability. We reasoned that at least AKT and CLK signaling pathways are not involved in proteasome-induced turnover of SRSF5 during late erythroid development.  相似文献   

17.
RBM15是一种RNA结合蛋白,参与到RNA的m6A修饰及可变剪接调控中.然而,RBM15在转录组水平如何调控可变剪接尚不清楚.本研究应用超分辨率荧光显微镜技术发现,RBM15在细胞核中形成斑点状结构,且与核斑有密切接触或完全定位于核斑中.核斑为细胞核中无膜细胞器,富含多种剪接因子,这提示RBM15可能参与到可变剪接的...  相似文献   

18.
Z Song  P Wu  P Ji  J Zhang  Q Gong  J Wu  Y Shi 《Biochemistry》2012,51(33):6667-6678
The RNA binding motif protein 5 (RBM5), also known as LUCA15 or H37, containing two RNA recognition motifs, is a component of the spliceosome A complex. Previously, it has been reported that RBM5 bound to a U/C-rich sequence upstream of the In100 element at intron 9 of caspase2 pre-mRNA that enhanced the formation of proapoptotic caspase-2L isoform. In the present study, we solved the solution structure of the RBM5 RRM2 core domain and characterized its unusual binding capability for different RNA sequences. We found that the RBM5 RRM2 could preferentially bind to both CU rich and GA rich sequences with affinity in 10(-5) molar range. Further NMR experiments revealed that the dual RNA molecules could be accommodated on almost the same region of the protein's β-sheet surface and that both the N- and C-terminal regions of the protein were involved in the recognition. Our studies provide evidence for the RBM5 sequence specific interaction with the cis-acting element in pre-mRNA regulating alternative splicing.  相似文献   

19.
While there is evidence that distinct protein isoforms resulting from alternative pre-mRNA splicing play critical roles in neuronal development and function, little is known about molecules regulating alternative splicing in the nervous system. Using Caenorhabditis elegans as a model for studying neuron/target communication, we report that unc-75 mutant animals display neuroanatomical and behavioral defects indicative of a role in modulating GABAergic and cholinergic neurotransmission but not neuronal development. We show that unc-75 encodes an RRM domain-containing RNA binding protein that is exclusively expressed in the nervous system and neurosecretory gland cells. UNC-75 protein, as well as a subset of related C. elegans RRM proteins, localizes to dynamic nuclear speckles; this localization pattern supports a role for the protein in pre-mRNA splicing. We found that human orthologs of UNC-75, whose splicing activity has recently been documented in vitro, are expressed nearly exclusively in brain and when expressed in C. elegans, rescue unc-75 mutant phenotypes and localize to subnuclear puncta. Furthermore, we report that the subnuclear-localized EXC-7 protein, the C. elegans ortholog of the neuron-restricted Drosophila ELAV splicing factor, acts in parallel to UNC-75 to also affect cholinergic synaptic transmission. In conclusion, we identified a new neuronal, putative pre-mRNA splicing factor, UNC-75, and show that UNC-75, as well as the C. elegans homolog of ELAV, is required for the fine tuning of synaptic transmission. These findings thus provide a novel molecular link between pre-mRNA splicing and presynaptic function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号