首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in the obese Zucker rat, a widely used rodent model of obesity-associated insulin resistance, and in insulin-resistant humans with impaired glucose tolerance or Type 2 diabetes. A single bout of prolonged aerobic exercise (30-60 min at approximately 60-70% of maximal oxygen consumption) can significantly lower plasma glucose levels, owing to normal contraction-induced stimulation of GLUT-4 glucose transporter translocation and glucose transport activity in insulin-resistant skeletal muscle. However, little is currently known about the effects of acute exercise on muscle insulin signaling in the postexercise state in insulin-resistant individuals. A well-established adaptive response to exercise training in conditions of insulin resistance is improved glucose tolerance and enhanced skeletal muscle insulin sensitivity of glucose transport. This training-induced enhancement of insulin action is associated with upregulation of specific components of the glucose transport system in insulin-resistant muscle and includes increased protein expression of GLUT-4 and insulin receptor substrate-1. It is clear that further investigations are needed to further elucidate the specific molecular mechanisms underlying the beneficial effects of acute exercise and exercise training on the glucose transport system in insulin-resistant mammalian skeletal muscle.  相似文献   

2.
Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells.  相似文献   

3.
Mitochondrial dysfunction in skeletal muscle has been suggested to underlie the development of insulin resistance and type 2 diabetes mellitus. Reduced mitochondrial capacity will contribute to the accumulation of lipid intermediates, desensitizing insulin signaling and leading to insulin resistance. Why mitochondrial function is reduced in the (pre-)diabetic state is, however, so far unknown. Although it is tempting to suggest that skeletal muscle insulin resistance may result from an inherited or acquired reduction in mitochondrial function in the pre-diabetic state, it cannot be excluded that mitochondrial dysfunction may in fact be the consequence of the insulin-resistant/diabetic state. Lipotoxicity, the deleterious effects of accumulating fatty acids in skeletal muscle cells, may lie at the basis of mitochondrial dysfunction: next to producing energy, mitochondria are also the major source of reactive oxygen species (ROS). Fatty acids accumulating in the vicinity of mitochondria are vulnerable to ROS-induced lipid peroxidation. Subsequently, these lipid peroxides could have lipotoxic effects on mtDNA, RNA and proteins of the mitochondrial machinery, leading to mitochondrial dysfunction. Indeed, increased lipid peroxidation has been reported in insulin resistant skeletal muscle and the mitochondrial uncoupling protein-3, which has been suggested to prevent lipid-induced mitochondrial damage, is reduced in subjects with an impaired glucose tolerance and in type 2 diabetic patients. These findings support the hypothesis that fat accumulation in skeletal muscle may precede the reduction in mitochondrial function that is observed in type 2 diabetes mellitus.  相似文献   

4.
Insulin-like growth factor I (IGF-I) has significant structural homology with insulin. IGF-I has been shown to bind to insulin receptors to stimulate glucose transport in fat and muscle, to inhibit hepatic glucose output and to lower blood glucose while simultaneously suppressing insulin secretion. However, the precise role of IGF-I in maintaining normal glucose homeostasis and insulin sensitivity is not well defined. Studies in patients with diabetes have shown that in insulin-deficient states, serum IGF-I concentrations are low and increase with insulin therapy. Similarly, administration of insulin via the portal vein results in optimization of plasma IGF-I concentrations. A patient with an IGF1 gene deletion was shown to have severe insulin resistance that improved with IGF-I therapy. Studies conducted in experimental animals have shown that if IGF-I synthesis by the liver is deleted, the animals become insulin-resistant, and this is improved when IGF-I is administered. Likewise, deletion of the IGF-I receptor in muscle in mice induces severe insulin resistance. Administration of IGF-I to patients with type 2 diabetes mellitus has been shown to result in an improvement in insulin sensitivity and a reduction in the requirement for exogenously administered insulin to maintain glucose homeostasis. A polymorphism in the IGF1 gene that has been shown to reduce serum IGF-I results in an increased prevalence of type 2 diabetes. Taken together, these findings support the conclusion that IGF-I is necessary for normal insulin sensitivity, and impairment of IGF-I synthesis results in a worsening state of insulin resistance.  相似文献   

5.
Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1–SIRT3–mitochondrial complex I pathway.  相似文献   

6.
Defects in both insulin secretion and action have been documented in patients with noninsulin-dependent diabetes mellitus (NIDDM), leading to the suggestion that both fasting hyperglycemia and insulin resistance in NIDDM are secondary to insulin deficiency. In order to test this hypothesis, insulin secretion (plasma insulin response to oral glucose) and insulin action (insulin clamp) were determined in 25 patients with NIDDM. The results documented relationships between incremental plasma insulin response to glucose and degree of fasting hyperglycemia (r = -.045, P less than 0.05) and insulin-stimulated glucose utilization (r = 0.25, P = NS). These data indicate that differences in insulin secretory response accounted for only approximately 20% of the variance in fasting plasma glucose level and 6% of the variance in insulin resistance in NIDDM. Thus, differences in insulin-secretory response contribute modestly to magnitude of glycemia, and not at all to variations in insulin resistance in NIDDM, permitting rejection of the hypothesis that insulin resistance is secondary to insulin deficiency.  相似文献   

7.
Insulin resistance is present in patients with Type 2 diabetes mellitus as well as in obese patients without diabetes. The aim of our study was to compare insulin action in diabetic and control persons with or without obesity and to evaluate the influence of serum cholesterol, serum triglyceride and blood pressure on metabolic variables of insulin action. We examined 42 Type 2 diabetic patients and 41 control persons with body mass index (BMI) from 21.1 to 64.5 kg x m(-2), and 33 to 71 years old. The isoglycemic hyperinsulinemic clamp technique was performed at an insulin infusion rate of 1 mU x kg(-1) x min(-1) during 120 min. We evaluated the metabolic clearance rate of glucose (MCR(G), ml x kg(-1) x min(-1)) as the most important indicator of insulin action by isoglycemic clamp. The Pearson's correlation and multiple regression models were used to compare studied factors with the insulin action. We found following predictors of insulin resistance expressed in the relationship with MCR(G): BMI (r = -0.68, p<0.001), plasma glucose concentration (r = -0.66, p<0.001), cholesterol (r=-0.55, p<0.001), triglycerides (r = -0.54, p<0.001) and mean blood pressure (r = -0.38, p<0.01). From the multiple regression analysis we conclude that obesity may have even greater influence on the insulin action than diabetes mellitus itself.  相似文献   

8.
Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARgamma induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H(2)O(2) levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARgamma-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARgamma is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus.  相似文献   

9.
Hypertension commonly occurs in conjunction with insulin resistance and other components of the cardiometabolic syndrome. Insulin resistance plays a significant role in the relationship between hypertension, Type 2 diabetes mellitus, chronic kidney disease, and cardiovascular disease. There is accumulating evidence that insulin resistance occurs in cardiovascular and renal tissue as well as in classical metabolic tissues (i.e., skeletal muscle, liver, and adipose tissue). Activation of the renin-angiotensin-aldosterone system and subsequent elevations in angiotensin II and aldosterone, as seen in cardiometabolic syndrome, contribute to altered insulin/IGF-1 signaling pathways and reactive oxygen species formation to induce endothelial dysfunction and cardiovascular disease. This review examines currently understood mechanisms underlying the development of resistance to the metabolic actions of insulin in cardiovascular as well as skeletal muscle tissue.  相似文献   

10.
A female patient with the following symptoms has been observed: complete absence of subcutaneous fat on the arms and legs, well developed adipose tissue on the trunk and face, severe hyperlipidemia, eruptive xanthomas, insulin resistant diabetes mellitus with lack of ketoacidosis, hepatomegaly and elevated basal metabolic rate. The patient thus exhibited all characteristics of lipatrophic diabetes (Lawrence type of diabetes). The mother and a sister of the patient were found to have the same peculiar appearance and a slight hyperlipidemia but no diabetes mellitus. The combination of this type of partial lipodystrophy with severe hyperlipidemia, insulin resistant diabetes mellitus without ketoacidosis and elevated basal metabolic rate was further observed in 2 unrelated patients without known familial occurrence. Thus partial lipodystrophy of the extremities is another, previously undescribed, syndrome associated with the Lawrence type of diabetes mellitus. In the 1 family the syndrome of lipodystrophy and hyperlipidemia is dominantly inherited. Besides the autosomal recessively inherited syndrome of congenital generalized lipodystrophy there is a heterogenous group of dominantly inherited syndromes with various types of lipodystrophy.  相似文献   

11.
The number of people with the insulin-resistant conditions of type 2 diabetes mellitus (T2DM) and obesity has reached epidemic proportions worldwide. Eighty percent of people with T2DM will die from the complications of cardiovascular atherosclerosis. Insulin resistance is characterised by endothelial dysfunction, which is a pivotal step in the initiation/progression of atherosclerosis. A hallmark of endothelial dysfunction is an unfavourable imbalance between the bioavailability of the antiatherosclerotic signalling molecule nitric oxide (NO) and proatherosclerotic reactive oxygen species. In this review we discuss the mechanisms linking insulin resistance to endothelial dysfunction, with a particular emphasis on a potential role for a toxic effect of free fatty acids on endothelial cell homeostasis.  相似文献   

12.
Type 2 (non-insulin-dependent) diabetes mellitus is a progressive metabolic disorder arising from genetic and environmental factors that impair beta cell function and insulin action in peripheral tissues. We identified reduced diacylglycerol kinase delta (DGKdelta) expression and DGK activity in skeletal muscle from type 2 diabetic patients. In diabetic animals, reduced DGKdelta protein and DGK kinase activity were restored upon correction of glycemia. DGKdelta haploinsufficiency increased diacylglycerol content, reduced peripheral insulin sensitivity, insulin signaling, and glucose transport, and led to age-dependent obesity. Metabolic flexibility, evident by the transition between lipid and carbohydrate utilization during fasted and fed conditions, was impaired in DGKdelta haploinsufficient mice. We reveal a previously unrecognized role for DGKdelta in contributing to hyperglycemia-induced peripheral insulin resistance and thereby exacerbating the severity of type 2 diabetes. DGKdelta deficiency causes peripheral insulin resistance and metabolic inflexibility. These defects in glucose and energy homeostasis contribute to mild obesity later in life.  相似文献   

13.
A novel oral form of salmon calcitonin (sCT) was recently demonstrated to improve both fasting and postprandial glycemic control and induce weight loss in diet-induced obese and insulin-resistant rats. To further explore the glucoregulatory efficacy of oral sCT, irrespective of obesity and metabolic dysfunction, the present study investigated the effect of chronic oral sCT treatment on fasting and postprandial glycemic control in male lean healthy rats. 20 male rats were divided equally into a control group receiving oral vehicle or an oral sCT (2?mg/kg) group. All rats were treated twice daily for 5 weeks. Body weight and food intake were monitored during the study period and fasting blood glucose, plasma insulin and insulin sensitivity were determined and an oral glucose tolerance test (OGTT) performed at study end. Compared with the vehicle group, rats receiving oral sCT had improved fasting glucose homeostasis and insulin resistance, as measured by homeostatic model assessment of insulin resistance index (HOMA-IR), with no change in body weight or fasting plasma insulin. In addition, the rats receiving oral sCT had markedly reduced glycemia and insulinemia during OGTT. This is the first report showing that chronic oral sCT treatment exerts a glucoregulatory action in lean healthy rats, irrespective of influencing body weight. Importantly, oral sCT seems to exert a dual treatment effect by improving fasting and postprandial glycemic control and insulin sensitivity. This and previous studies suggest oral sCT is a promising agent for the treatment of obesity-related insulin resistance and type 2 diabetes.  相似文献   

14.
15.
The pathophysiologic importance of insulin resistance in diseases such as obesity and diabetes mellitus has led to great interest in defining the mechanism of insulin action as well as the means to overcome the biochemical defects responsible for the resistance. Vanadium compounds have been discovered to mimic many of the metabolic actions of insulin both in vitro and in vivo and improve glycemic control in human subjects with diabetes mellitus. Apart from its direct insulinmimetic actions, we found that vanadate modulates insulin metabolic effects by enhancing insulin sensitivity and prolonging insulin action. All of these actions appear to be related to protein tyrosine phosphatase (PTP) inhibition. However, in contrast to its stimulatory effects, vanadate inhibits basal and insulin-stimulated system A amino acid uptake and cell proliferation. The mechanism of these actions also appears to be related to PTP inhibition, consistent with the multiple roles of PTPs in regulating signal transduction. While the precise biochemical pathway of vanadate action is not yet known, it is clearly different from that of insulin in that the insulin receptor and phosphatidylinositol 3-kinase do not seem to be essential for vanadate stimulation of glucose uptake and metabolism. The ability of vanadium compounds to bypass defects in insulin action in diseases characterized by insulin resistance and their apparent preferential metabolic versus mitogenic signaling profile make them attractive as potential pharmacological agents.  相似文献   

16.
One hallmark of the insulin-resistant state of prediabetes and overt type 2 diabetes is an impaired ability of insulin to activate glucose transport in skeletal muscle, due to defects in IRS-1-dependent signaling. An emerging body of evidence indicates that one potential factor in the multifactorial etiology of skeletal muscle insulin resistance is oxidative stress, an imbalance between the cellular exposure to an oxidant stress and the cellular antioxidant defenses. Exposure of skeletal muscle to an oxidant stress leads to impaired insulin signaling and subsequently to reduced glucose transport activity. Numerous studies have demonstrated that treatment of insulin-resistant animals and type 2 diabetic humans with antioxidants, including alpha-lipoic acid (ALA), is associated with improvements in skeletal muscle glucose transport activity and whole-body glucose tolerance. An additional intervention that is effective in ameliorating the skeletal muscle insulin resistance of prediabetes and type 2 diabetes is endurance exercise training. Recent investigations have demonstrated that the combination of exercise training and antioxidant treatment using ALA in an animal model of obesity-associated insulin resistance provides a unique interactive effect resulting in a greater improvement in insulin action on skeletal muscle glucose transport than either intervention individually. Moreover, this interactive effect of exercise training and ALA is due in part to improvements in IRS-1-dependent insulin signaling. These studies highlight the effectiveness of combining endurance exercise training and antioxidants in beneficially modulating the molecular defects in insulin action observed in insulin-resistant skeletal muscle.  相似文献   

17.
周淑艳  张毅  齐晖  李富荣 《生命科学》2012,(10):1207-1210
糖尿病是一种由胰岛素分泌缺陷和(或)胰岛素作用缺陷引起的高血糖症性代谢疾病。自Edmonton临床试验取得成功后,胰岛移植成为一种新型治愈糖尿病的方法。但胰岛β细胞在体外分离过程中极易发生凋亡或死亡,且长期的体外培养或冷冻储存也容易令其胰岛素分泌功能逐渐丧失。因此,有效维持或改善β细胞的成活率及功能对胰岛移植的成功至关重要。对胰岛β细胞的体外保护方法进行阐述,并对其研究前景进行展望。  相似文献   

18.
Genistein is an isoflavone phytoestrogen with biological activities in management of metabolic disorders. This study aims to evaluate the regulation of insulin action by genistein in the endothelium. Genistein inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and attenuated downstream Akt and endothelial nitric oxide synthase (eNOS) phosphorylation, leading to a decreased nitric oxide (NO) production in endothelial cells. These results demonstrated its negative regulation of insulin action in the endothelium. Palmitate (PA) stimulation evoked inflammation and induced insulin resistance in endothelial cells. Genistein inhibited IKKβ and nuclear factor-кB (NF-кB) activation with down-regulation of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production and expression. Genistein inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-mediated tyrosine phosphorylation. Genistein restored insulin-mediated Akt and eNOS phosphorylation, and then led to an increased NO production from endothelial cells, well demonstrating its positive regulation of insulin action under insulin-resistant conditions. Meanwhile, genistein effectively inhibited inflammation-enhanced mitogenic actions of insulin by down-regulation of endothelin-1 and vascular cell adhesion protein-1 overexpression. PA stimulation impaired insulin-mediated vessel dilation in rat aorta, while genistein effectively restored the lost vasodilation in a concentration-dependent manner (0.1, 1 and 10 μM). These results suggested that genistein inhibited inflammation and ameliorated endothelial dysfunction implicated in insulin resistance. Better understanding of genistein action in regulation of insulin sensitivity in the endothelium could be beneficial for its possible applications in controlling endothelial dysfunction associated with diabetes and insulin resistance.  相似文献   

19.
Diabetes, lipids, and adipocyte secretagogues.   总被引:17,自引:0,他引:17  
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.  相似文献   

20.
Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号