首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistent infections with mumps virus were established in several human lymphoid cells of T-cell origin (Molt-4, TALL-1, and CCRF-CEM) and human monocyte cells (U937 and THP-1). 2′,5′-Oligoadenylate synthetase (2–5AS) activity was demonstrated to be only slightly induced by interferon (IFN) or TPA (12-O-tetradecanoyl-phorbol-13-acetate) treatment in these cells. Treatment of the persistently infected cells with IFN or TPA did not stimulate an increase in the amount of synthetase mRNA. Induction of cell differentiation and augmentation of IFN production by TPA were demonstrated in U937 cells persistently infected with mumps virus (U937-MP). Similar results for IFN production were obtained from differentiated U937 cells. It is suggested that cell differentiation of U937 cells might be associated with the development of IFN inducibility.  相似文献   

2.
Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-γ1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-κB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.  相似文献   

3.
Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ΔtagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ΔtagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by Ca2+ release from intracellular Ca2+ stores and anti-PGN-IgGdependent Ca2+ mobilization is controlled via a phospholipase Cγ-2-mediated pathway. [BMB Reports 2015; 48(1): 36-41]  相似文献   

4.
The effect of ethanol (ETOH) on the incorporation of [14C]oleic acid (18:1) into lipid in human monocyte-like U937 cells was investigated. With increasing time of exposure to ETOH, the percentage of the label distributed into neutral lipid (NL) declined from 35 per cent (3 h) to 10 per cent (24 h) accompanied by increased incorporation into phospholipid (PL). [14C] 18 : 1 was preferentially incorporated into triglyceride (TG) and phosphatidylcholine (PC), comprising over 65 per cent and 50 per cent of the label associated with NL and PL, respectively. Low concentrations of ETOH (⩽ 1·0 per cent; v/v) had no effect. At concentrations greater than 1·5 per cent, there was enhanced incorporation into TG and diacylglycerol (DAG) in a 24-h incubation period, while at 16 h the label in phosphatidylethanolamine (PE) was decreased. The effect of ETOH on the CDP-choline or ethanolamine pathway was examined by monitoring the incorporation of [3H]choline or [14C]ethanolamine into PC or PE, respectively. At low concentrations ETOH had no effect on either choline uptake or the incorporation into PC. Higher concentrations (≥ 1·5 per cent) for 3 and 6 h resulted in a slightly decreased choline uptake, and the reduction (40–50 per cent) of incorporation into PC suggests that the CDP-choline pathway was inhibited. There was a similar inhibition of the incorporation of [14C]ethanolamine into PE. When the cells were incubated for 3 h in the presence of 2 per cent ETOH and with labelled 18 : 1 and PL-base, the ratios of incorporation (base/18 : 1) into PC and PE fractions decreased, indicating that the major inhibition lay in blockage of the availability of the base moiety for PL formation. Analysis of the distribution of the label into metabolites revealed that ETOH inhibited the conversion of [14C] ethanolamine into [14C]phosphorylethanolamine. The reduction in incorporation was not due to the enhanced breakdown of base-labelled PL. Our results indicate that ETOH has an inhibitory effect on the CDP-choline or ethanolamine pathway.  相似文献   

5.
The integrin receptor Mac-1 regulates adherence and survival of activated tissue macrophages but the underlying molecular mechanisms are poorly understood. Phorbol ester-induced macrophagic differentiation in U937 cells leads to surface expression of Mac-1 and its activation as well. We have attempted to determine essential amino acids for these activities in the cytoplasmic regions of CD11b and CD18 subunits by deletion mutagenesis. There was complete correlation between adherence and survival. Those deletions that lead to loss of adherence and enhanced apoptosis are truncation of CD11b before the MSEGG sequence; CD18 internal deletion of either the membrane-proximal residues before the NPLF sequence or the NPLF sequence itself; CD18 truncation of the C-terminal residues after the NPLF sequence. Unexpectedly, when the NPLF sequence and the C-terminal residues were removed together by truncation, the adherent, antiapoptotic properties were restored. These results were discussed in terms of protein interaction with Mac-1 cytoplasmic regions.  相似文献   

6.
The effect of lidocaine on [3H]choline uptake and the incorporation of label into phosphatidylcholine (PC) in human monocyte-like U937 cells was investigated. Lidocaine inhibited the rate of choline uptake in a dose-dependent manner; at 3·2 mM it resulted in a drastic reduction, by as much as 65 per cent (n = 10; p < 0·0005) or 55 per cent (n = 10; p < 0·0006) in a 3- or 6-h incubation, respectively. Lidocaine also decreased the rate of choline incorporation into PC in a dose-dependent manner. At the highest dose, nearly 70 per cent or 45 per cent reduction was seen in a 3- or 6-h incubation, respectively. Analysis of choline-containing metabolites showed that the major label association with phosphocholine and PC was reduced to a similar extent which was also parallel to the inhibition of choline uptake. At 3·2 mM lidocaine, the reduction of choline uptake was shown to follow a competitive inhibition. In the case of [3H] choline incorporation into PC, the inhibitory pattern was shown to be of a mixed type. The pulse-chase study dissecting the effect on choline metabolism from that on total choline uptake indicated that lidocaine exerted an additionally inhibitory effect on intracellular choline metabolism into PC. In a separate protocol in which the labelled cells were first allowed to be chased until 3H-incorporation into PC reached a steady state, lidocaine no longer showed any effect. These results seem to exclude the possibility of enhanced PC breakdown and further suggest that the main inhibitory effect is on the CDP-choline pathway for PC biosynthesis. After a 3-h treatment, CTP: cholinephosphate cytidylyltransferase (CYT) in both the cytosolic and microsomal fractions was inhibited by approximately 20 per cent, while choline kinase (CK) and choline phosphotransferase (CPT) remain relatively unchanged. There was no evidence for translocation of CYT between cytosol and microsomes. Taken together, we have demonstrated a dual inhibitory function of lidocaine which inhibits PC biosynthesis in addition to its ability to block choline uptake profoundly in U937 cells.  相似文献   

7.
The biosynthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in monocyte-like leukemia U937 cells was monitored by adding [3H]choline, [14C]ethanolamine or [14C]glycerol to the culture media; incorporation into phospholipid (PL) increased with time. The effect of unsaturated fatty acids (UFA) on PC and PE synthesis was investigated by pretreating U937 cells for 72h with 10 μM 18:1 (n –9), 18:2 (n –6), 18:3 (n –3), 20:4 (n –6) and 20:5 (n –3). The UFA caused no alteration in cell growth, as evidenced by light microscopy and the incorporation of [3H]thymidine and [3H]leucine. Total cellular uptake of radioactive precursors remained unaffected by all the treatments. Pretreatment with 20:5 resulted in approximately 25 per cent reduction in the incorporation of [3H]choline into PL, while no significant effect was detected with the other UFAs. 18:3, 20:4 and 20:5 depressed the incorporation of [14C]ethanolamine into PL by 34 per cent, 28 per cent and 49 per cent respectively. However, there was no redistribution of label with any of the treatments. 18:3, 20:4 and 20:5 also antagonized the stimulatory effect of endotoxin (LPS) on PC and PE synthesis. In addition, the incorporation from [14C]glycerol into PC and PE was reduced by 18:3, 20:4 and 20:5. Although the PL composition of the cells remained essentially unaffected, our study shows that chronic treatment of U937 cells with n –3 PUFA (20:5) depressed PC and PE synthesis, and 18:3 and 20:4 also caused inhibition of PE synthesis.  相似文献   

8.
探讨人白血病细胞系U937白血病抑制因子 (LIF)受体α亚基和另一亚基gp130细胞内区与促分裂原活化蛋白激酶 (MAPK)的关系 ,旨在研究白血病细胞增殖和分化的机制。用基因重组技术将两基因细胞内区互换以构成两嵌合体受体 (190 130 ,130 190 )并分别在U937表达 ,其与野生受体竞争性结合白血病抑制因子 ,用免疫组化和免疫印迹法分析受体细胞内区形成同源性二聚体(190cyt 190cyt,130cyt 130cyt)后的细胞状况和细胞内MAPK的水平。结果表明 ,转染pE190 130后用LIF作用 6h ,U937细胞MAPK表达量增加 ,MAPK形成的二聚体较明显 ,细胞增殖较快 ;而另一嵌合体受体与α亚基形成 190cyt 190cyt时U937细胞MAPK的表达无变化 ,二聚体不明显。说明LIF受体中gp130亚基的细胞内区参与了MAPK的激活及白血病U937细胞增殖信号的传递。  相似文献   

9.
The bacterial and serum factors involved in the oxidative response triggered by Salmonella typhimurium in differentiated U937 cells were investigated. Complement activation was shown to be required, using sera deficient in complement factors. An original dot-blot technique was developed to study the activation of complement by either bacteria or purified lipopolysaccharide (LPS). Both O-specific and lipid A segments of LPS were found to play a role in the triggering of the oxidative response. Lipid A was responsible for bacterial C3-derived opsonization by inducing an antibody-independent activation of complement classical pathway, whereas O-specific polysaccharide chains (O-Ag) were involved in cellular activation. Inhibition experiments using anti-cell surface marker monoclonal antibodies showed the involvement of the α chain of CR3 (CD11b) in the oxidative response developed by differentiated U937 cells in response to S. typhimurium infection. Whether both iC3b and O-Ag interact with different domains of CR3 or whether the binding of O-Ag occurs via a not yet identified receptor remains to be determined.  相似文献   

10.
We have investigated the effects of sex steroids, estradiol (E2), and testosterone (T) on the synthesis of tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) in phorbol-myristate-acetate (PMA)-differentiated human monoblastic U937 cells. The ability of both hormones to modulate the viability and programmed cell death of macrophage-like PMA-differentiated U937 cells was also inspected. E2 increased TNF-alpha synthesis, whereas T had no effect on the production of this cytokine. The combination of E2 and its antagonist tamoxifen or ICI-182,789 completely abolished the induction of TNF-alpha, while combination of T and its antagonist Casodex (CSDX) did not significantly affect TNF-alpha production by U937 cells. Exposure of cells to E2 resulted in a dose-dependent decrease of IL-10 synthesis, while again T did not show any detectable effect. In addition, E2 induced a significant increase of apoptosis in macrophage-like U937 cells and this increase was inhibited by the simultaneous addition of either tamoxifen or ICI-182. In contrast, T alone or in combination with CSDX did not modify apoptotic rates of U937 cells. This evidence, taken together, suggests that estrogens, but not androgens, exert a pro-inflammatory action through the modulation of TNF-alpha and IL-10, and regulate the immune effector cells by the induction of programmed cell death.  相似文献   

11.
Our previous study has reported that ethanol (ETOH) partially inhibited the endotoxin (LPS)-induced tissue factor (TF)-activation in monocytes including blood peripheral monocytes as well as cultured leukemic U937 and THP-1 cells. The present study shows a strong correlation (r=0·92; p<0·01) between TF-activation and depression in LPS binding blocked by ETOH in U937 cells. The antagonism by ETOH of LPS binding was not due to a direct extracellular blockade, since ETOH did not affect the affinity of fluorescein isothiocyanate (FITC)-LPS or -anti CD14 mAb on U937 cells. After U937 cells were treated with 2 per cent (v/v) ETOH for 3 h, LPS binding was however drastically inhibited as shown by immunostaining with FITC-LPS which was viewed on a confocal laser scanning microscope. The results imply that cellular events of the ETOH effect mediate this inhibition of LPS binding. Anti-CD14 mAb (UCHM-1) inhibited LPS binding in a dose-dependent fashion, revealing a competitive specific binding to the LPS receptor. The results suggest that CD14 plays an important role in the recognition of LPS. FITC-UCHM-1 binding was significantly reduced in the cells pretreated with 2 per cent (v/v) ETOH for 3 h, indicating that ETOH modulates the ability to express CD14. CD14 expression was upregulated by priming with LPS which was offset by ETOH. Acetaldehyde, a possible metabolite of ETOH, was tested with no effect on CD14 expression. Taken together, our results show that ETOH downregulates the recognition of LPS, and suggest that the inhibitory action is likely to be mediated by the depression in CD14 expression which was also accompanied by a significantly altered membrane fluidity. Thus, the antagonism by ETOH of the binding of LPS results in a depression in the LPS-induced TF-activation. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract The human histiocytic lymphoma cell line U937 can be induced to differentiate along the monocyte/macrophage pathway by either phorbol myristate acetate (PMA) or by the combination of retinoïc acid (RA) and 1,25-dihydroxyvitamin D3 (VD). U937 cells treated with either PMA or RA/VD were able to phagocytose Salmonella typhimurium in the presence of non-immune human serum. However, only cells differentiated by RA/VD were capable of developing an oxidative metabolic burst in response to infection. Since the oxidative burst is considered to be a potent antimicrobial mechanism, we investigated its effect on S. typhimurium . The oxidative burst failed to affect either the viability or the multiplication of S. typhimurium suggesting that if plays only a minor role in the host defence against S. typhimurium .  相似文献   

13.
We examined the direct effects of unsaturated fatty acids, oleic (18:1 n-9), linoleic (18:2 n-6), eicosapentaenoic (20:5 n-3) and docosahexaenoic (22:6 n-3) on tissue factor (TF) activity in the human leukemia monocytic U937 cell line. After exposing cells to fatty acids for 16 h, there were no significant effects on either TF activity or its activation induced by bacterial endotoxin (LPS). When the cells were primed with fatty acids for 24 h, 48 h or 72 h, the TF activity remained essentially unchanged. However, the extent of TF-activation induced by LPS depended on the length of priming, and the dose and the degree of unsaturation of the fatty acids to which cells were exposed. After a 72-h priming, 18:1 produced 40-60 per cent elevation in LPS-challenge. In contrast, approximately 20-50 per cent reduction in LPS-challenge was achieved by 18:2, 20:5 and 22:6 at high concentrations. The results suggest that chronic exposure of U937 cells to unsaturated fatty acids leads to modulation of the TF-activation in response to LPS.  相似文献   

14.
Aberrant overexpression of antiapoptotic members of the Bcl-2 protein family contributes to resistance to anticancer therapeutic drugs. Thus, this protein represent attractive target for novel anticancer agents. In the present study, we determined the effect of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-γ1 degradation and Akt activation during the various anticancer agents-induced apoptosis. Treatment with chrysin for 12 h produced morphological features of apoptosis in U937 cells, which was associated with caspase-3 activation and PLC-γ1 degradation. Induction of apoptosis was also accompanied by down-regulation of XIAP and inactivation of Akt. Chrysin-induced caspase-3 activation, PLC-γ1 degradation and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells. Ectopic expression of Bcl-2 appeared to inhibit ceramide-, and Akt specific inhibitor (SH-6)-induced apoptosis by sustained Akt activation. Thus, our findings imply that some of the biological functions of Bcl-2 may be attributed to their ability to inhibit anticancer agents-induced apoptosis through the sustained Akt activation.  相似文献   

15.

Background

Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells.

Results

Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases.

Conclusions

The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells.  相似文献   

16.
17.
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30 °C to 37 °C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca2+ ([Ca2+]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe2+-accumulation following pretreatment with FeSO4. Thus intracellular Fe2+-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe2+-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe2+-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37 °C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe2+-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe2+-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2 channels by Fe2+ may implicated in hemorrhagic brain injury via aggravation of inflammation, since Fe2+ is released by heme degradation under intracerebral hemorrhage.  相似文献   

18.
A previous study showing that ethanol (ETOH) blocked [3H]choline incorporation into phosphatidylcholine (PC) suggested an inhibition of PC biosynthesis in human leukemic monocyte-like U937 cells. The mechanism of the inhibitory action of ETOH was investigated. Cells were pulsed with [3H]choline for 30 min and chased in the presence or absence of ETOH for up to 6 h. PC biosynthesis was inhibited drastically within 1 h after exposure to ETOH which increased intracellular cAMP appreciably. After a 3-h treatment, ETOH significantly inhibited both choline kinase (CK) and the cytosolic CTP: cholinephosphate cytidylyltransferase (CT). The inactivated CT was no longer stimulated by exogenous phosphatidylglycerol (PG). There was no evidence for redistribution of CT activity between cytosol and microsomes. When cells were exposed to 8-Bromo-cAMP ranging from 100 to 300 μM, PC biosynthesis remained unaffected despite the drastically elevated cAMP. These results seem to suggest that the raised cAMP is not a prerequisite for the inhibition of PC biosynthesis in U937 cells. Following pretreatment with protein kinase inhibitors (H-89 and K-252a), PC biosynthesis was decreased significantly and the inhibitory effect of ETOH was potentiated. Taken together, our results suggest that the inhibition of PC biosynthesis and the inhibitory effect of ETOH are independent of the activation of cAMP-dependent protein kinase. Unlike protein kinase inhibitors, pretreatment with tyrosine kinase inhibitors (erbstatin, genistein and tyrphostin 25) resulted in differential effects on PC biosynthesis and on the inhibitory action of ETOH. Genistein stimulated PC biosynthesis by 30 per cent as well as partially preventing /reversing the ETOH action, while tyrphostin 25 produced a synergistic inhibition. The relevance of tyrosine phosphorylation/dephosphorylation to the regulation of PC biosynthesis and ETOH action remains to be established.  相似文献   

19.
DMSO differentiated U937 cells responded to 10−6 M LTD4, LTB4 and FMLP with an increase in both InsP formation and [Ca2+]i. FMLP caused a greater rise in InsPs than either LTD4 or LTB4, which were equivalent. LTD4, however, caused a greater increase in [Ca2+]i than LTB4 (4-fold) or FMLP. The FMLP [Ca2+]i and InsP responses were abolished by pertussis toxin (100 ng/ml for 4 h) but were unaffected by PMA (10−7 M for 3 min). In contrast, the LTD4 [Ca2+]i and InsP responses were reduced by only 50% by pertussis toxin, whilst PMA reduced the [Ca2+]i and InsP responses to LTD4 by 75 and 30%, respectively. These results suggest that mechanisms additional to InsP formation exist for mediating LTD4 evoked increases in [Ca2+]i.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号