首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cysteine string proteinalpha (CSPalpha) is a regulated vesicle protein and molecular chaperone that has been found to be critical for continuous synaptic transmission and is implicated in the defense against neurodegeneration. Previous work has revealed links between CSPalpha and heterotrimeric GTP binding protein (G protein) signal transduction pathways. We have shown that CSPalpha is a guanine nucleotide exchange factor (GEF) for Galphas. In vitro Hsc70 (70 kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) switch CSPalpha from an inactive GEF to an active GEF. Here we have examined the cellular distribution of the CSPalpha system in the PC12 neuroendocrine cell line. CSPalpha, an established secretory vesicle protein, was found to concentrate in the processes of NGF-differentiated PC12 cells as expected. Gbeta subunits co-localized and Galphas subunits partially co-localized with CSPalpha. However, under the conditions examined, the GEF activity of CSPalpha is expected to be inactive, in that Hsc70 was not found in PC12 processes. These results indicate that CSPalpha activity is subject to regulation by factors that alter Hsc70 distribution and translocation within the cell.  相似文献   

2.
In addition to the core vesicle fusion machinery, the SNARE proteins, a large number of regulatory proteins have been implicated in the process of Ca2+-dependent exocytosis. How these exocytotic proteins are properly targeted and how their myriad interactions are temporally and spatially coordinated is poorly understood. Cysteine string protein (CSP), a secretory vesicle membrane protein and a member of the dnaJ family of co-chaperones, may assist in performing this function. Through its interaction with the ubiquitous chaperone, Hsc70, it is thought that cysteine string protein targets chaperone complexes to the exocytotic machinery to facilitate the correct folding of polypeptides or to regulate the assembly of protein complexes. Since its discovery, there have been conflicting reports from different systems concerned with whether cysteine string protein exerts its effects on exocytosis either up- or down-stream of Ca2+-influx. In this review, we summarize recent experiments that associate cysteine string protein with the regulation of vesicle filling, vesicle docking, Ca2+-channels and the SNARE proteins themselves, hence supporting a role for cysteine string protein as a multifunctional secretory co-chaperone. In addition, we provide an update on the mammalian isoforms of cysteine string protein following the recent discovery of two novel cysteine string proteins.  相似文献   

3.
4.
Murine stress-inducible protein 1 (mSTI1) is a cochaperone that is homologous with the human heat shock cognate protein 70 (Hsc70)/heat shock protein 90 (Hsp90)-organizing protein (Hop). To analyze the biochemical properties of mSTI1 and the stoichiometry of the Hsc70.mSTI1.Hsp90 association, recombinant mSTI1 was produced in untagged, histidine (His)-tagged, and glutathione S-transferase (GST)-tagged forms. His-mSTI1 was detected either as a dimer during size-exclusion-high-performance liquid chromatography (SE-HPLC) or as a monomer during Superdex 200 gel filtration chromatography. SE-HPLC on GST-mSTI1 and untagged mSTI1 suggested that mSTI1 existed as a monomer. Cross-linking of His-mSTI1 detected a compact monomeric species and a dimeric species. Gel filtration on the association of bovine STI1 or His-mSTI1 with Hsc70 detected species of molecular mass consistent with a dimeric STI1 species or a 1:1 complex of STI1 and Hsc70. Our data and that of others suggest that mSTI1 and its homologues exist as either a monomer or a dimer and that this facilitates its proposed function as an Hsc70/Hsp90 organizing protein.  相似文献   

5.
Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.  相似文献   

6.
Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and budding. We identified heat shock cognate protein 70 (Hsc70) as a M1 binding protein by immunoprecipitation and MALDI-TOF MS. The C terminal domain of M1 interacts with Hsc70. We found that Hsc70 does not correlate with the transport of M1 to the nucleus, however, it does inhibit the nuclear export of M1 and NP, thus resulting in the inhibition of viral production. This is the first demonstration that Hsc70 is directly associated with M1 and therefore is required for viral production.  相似文献   

7.
We reported recently a new mechanism by which the neuronal N-type Ca2+ (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.  相似文献   

8.
We reported recently a new mechanism by which the neuronal N-type Ca2+ (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.  相似文献   

9.
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of approximately 2.1 nm and a height of approximately 7 nm. Tom40 is the key structural element of the TOM core complex.  相似文献   

10.
  1. Download : Download high-res image (239KB)
  2. Download : Download full-size image
  相似文献   

11.
Bovine seminal plasma contains a group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), and they are secreted by the seminal vesicles. In our study, we purified the BSP-A1/-A2 through affinity chromatography and found for the first time that BSP-A1/-A2 can inhibit the activity of protein kinase C (PKC) and tyrosine protein kinase (TPK). The inhibition was dose dependent. When the PKC and TPK activities are expressed as the logarithm of percentage activity taking the activity in the absence of the BSP-A1/-A2 as 100%, there is a linear relationship between the their activities and the dose of BSP-A1/-A2.  相似文献   

12.
13.
14.
The N-type voltage-dependent calcium channels play a significant role in neurotransmitter release. The alpha1B subunit of the N-type calcium channel functions as the primary subunit that forms the pore and contains the structural motifs that mediate the pharmacological and gating properties of the channel. We report on an isoform of the alpha1B subunit that is preferentially expressed by the monoaminergic neurons of the rat brain. This isoform contains a 21-amino acid cassette in the synprint site present in the cytoplasmic loop between domains IIS6 and IIIS1. RT-PCR of micropunched tissue was used to show preferential expression of this isoform in regions of the brain containing monoaminergic neurons and to a lesser extent in the cerebellum. Double-label in situ hybridization was used to show expression of this isoform mRNA in dopaminergic neurons of the ventral mesencephalon. The expression of two distinct N-type calcium channels containing these alpha1B subunit isoforms by the monoaminergic neurons may provide for synapse-specific regulation of neurotransmitter release.  相似文献   

15.
In this study the rat D1A receptor (wild-type, WT) and truncation mutants thereof, are utilized to delineate specific cytoplasmic tail (CT) domains responsible for regulating ligand binding and receptor-mediated adenylyl cyclase activation. In human embryonic kidney (HEK) cells, all truncation mutants of the D1A receptor (Delta425, Delta379, Delta351) display cell surface localization and express at high but different receptor numbers. Binding studies suggest that residues located between Cys(351) and Asp(425) may serve to restrain the agonist binding conformation of the D1A receptor. This contention is supported by the observation that the constitutive activation of Delta351 is significantly increased in comparison with WT, Delta425 and Delta379. Furthermore, we demonstrate that the extent of dopamine-mediated maximal activation of adenylyl cyclase is significantly augmented in cells expressing Delta351 when compared with WT or mutants harboring shorter truncations. These results suggest that in addition to restraining receptor conformation, determinants located downstream of Cys(351) may act as negative regulators of the G protein coupling efficiency and adenylyl cyclase activation. Interestingly, all truncated receptors used in the present study display a decrease in dopamine potency when compared with WT. We show that inhibition of protein kinase A (PKA) activity leads also to a reduction in dopamine potency in cells expressing WT but not Delta351 receptors. These results hint at a potential previously unanticipated role for PKA in facilitating D1A receptor coupling efficiency in HEK cells. Overall, the present study has uncovered specific CT domains involved in regulating discrete aspects of the D1A receptor signaling.  相似文献   

16.
Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai−/−mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai−/−mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.  相似文献   

17.
The fragile X mental retardation 1 (FMR1) protein binds mRNA and acts as a negative regulator of translation. Lack of FMR1 causes the most common neurological disorder, fragile X syndrome, while its overexpression is associated with metastasis of breast cancer. Its activity has been well-studied in nervous tissue, but recent evidence as well as its role in cancer indicates that it also acts in other tissues. We have investigated the expression of FMR1 in brain and other tissues of mouse and examined its regulation. We detected expression of FMR1 in liver and heart tissues of mice as well as in brain tissue, supporting other contentions that it acts in non-nervous tissue. Expression of FMR1 inversely correlated with expression of the C-terminus of Hsc70-interacting protein (CHIP) and, based on the known activity of CHIP in protein homeostasis, we suggest that CHIP regulates expression of FMR1. CHIP ubiquitinated FMR1 for proteasomal degradation in a molecular chaperone-independent manner. FMR1 expression was reduced following treatment with okadaic acid, a phosphatase inhibitor, but not in CHIP-depleted cells. Also, a non-phospho FMR1 mutant was much less efficiently ubiquitinated by CHIP and had a longer half-life compared to either wild-type FMR or a phospho-mimic mutant. Taken together, our results demonstrate that CHIP regulates the levels of FMR1 as an E3 ubiquitin ligase in phosphorylation-dependent manner, suggesting that CHIP regulates FMR1-mediated translational repression by regulating the levels of FMR1.  相似文献   

18.
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2–5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.  相似文献   

19.
The V2 protein of Tomato yellow leaf curl geminivirus (TYLCV) is an RNA-silencing suppressor that counteracts the innate immune response of the host plant. However, this anti-host defense function of V2 may include targeting of other defensive mechanisms of the plant. Specifically, we show that V2 recognizes and directly binds the tomato CYP1 protein, a member of the family of papain-like cysteine proteases which are involved in plant defense against diverse pathogens. This binding occurred both in vitro and in vivo, within living plant cells. The V2 binding site within mCYP1 was identified in the direct proximity to the papain-like cysteine protease active site.  相似文献   

20.
Daugaard M  Rohde M  Jäättelä M 《FEBS letters》2007,581(19):3702-3710
The human heat shock protein 70 (Hsp70) family contains at least eight homologous chaperone proteins. Endoplasmatic reticulum and mitochondria have their specific Hsp70 proteins, whereas the remaining six family members reside mainly in the cytosol and nucleus. The requirement for multiple highly homologous although different Hsp70 proteins is still far from clear, but their individual and tissue-specific expression suggests that they are assigned distinct biological tasks. This concept is supported by the fact that mice knockout for different Hsp70 genes display remarkably discrete phenotypes. Moreover, emerging data suggest that individual Hsp70 proteins can bring about non-overlapping and chaperone-independent functions essential for growth and survival of cancer cells. This review summarizes our present knowledge of the individual members of human Hsp70 family and elaborate on the functional differences between the cytosolic/nuclear representatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号