首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numbers of species and genera,endemic genera,extant primitive genera,relationship and distribution patterns of presently living Chenopodiaceae(two subfamilies,12 tribes,and 118 genera)are analyzed and compared for eight distributional areas,namely central Asia,Europe,the Mediterranean region,Africa,North America,South America, Australia and East Asia. The Central Asia,where the number of genera and diversity of taxa are greater than in other areas,appears to be the center of distribution of extant Chenopodiaceae.North America and Australia are two secondary centers of distribution. Eurasia has 11 tribes out of the 12,a total of 70 genera of extant chenopodiaceous plants,and it contains the most primitive genera of every tribe. Archiatriplex of Atripliceae,Hablitzia of Hablitzeae,Corispermum of Corispermeae,Camphorosma of Camphorosmaea,Kalidium of Salicornieae,Polecnemum of Polycnemeae,Alexandra of Suaedeae,and Nanophyton of Salsoleae,are all found in Eurasia,The Beteae is an Eurasian endemic tribe,demonstrating the antiquity of the Chenopodiaceae flora of Eurasia.Hence,Eurasia is likely the place of origin of chenopodiaceous plants. The presence of chenopodiaceous plants is correlated with an arid climate.During the Cretaceous Period,most places of the continent of Eurasia were occupied by the ancient precursor to the Mediterranean,the Tethys Sea.At that time the area of the Tethys Sea had a dry and warm climate.Therefore,primitive Chenopodiaceae were likely present on the beaches of this ancient land.This arid climatic condition resulted in differentiation of the tribes Chenopodieae,Atripliceae,Comphorosmeae,Salicornieae,etc.,the main primitive tribes of the subfamily Cyclolobeae. Then following continental drift and the Laurasian and Gondwanan disintegration, the Chenopodiaceae were brought to every continent to propagate and develop, and experience the vicissitudes of climates, forming the main characteristics and distribution patterns of recent continental floras. The tribes Atripliceae, Chenopodieae, Camphorosmeae, and Salicornieae of recent Chenopodiaceae in Eurasia, North America, South America, southern Africa, and Australia all became strongly differentiated. However, Australia and South America, have no genera of Spirolobeae except for a few maritime Suaeda species. The Salsoleae and Suaedeae have not arrived in Australia and South America, which indicates that the subfamily Spirolobeae developed in Eurasia after Australia separated from the ancient South America-Africa continent, and South America had left Africa. The endemic tribe of North America, the tribe Sarcobateae, has a origin different from the tribes Salsoleae and Suaedeae of the subfamily Spirolobeae. Sarcobateae flowers diverged into unisexuality and absence of bractlets. Clearly they originated in North America after North America had left the Eurasian continent. North America and southern Africa have a few species of Salsola, but none of them have become very much differentiated or developed, so they must have arrived through overland migration across ancient continental connections. India has no southern African Chenopodiaceae floristic components except for a few maritime taxa, which shows that when the Indian subcontinent left Africa in the Triassic period, the Chenopodiaceae had not yet developed in Africa. Therefore, the early Cretaceous Period about 120 million years ago, when the ancient Gondwanan and Laurasian continents disintegrated, could have been the time of origin of Chenopodiaceae plants.The Chinese flora of Chenopodiaceae is a part of Chenopodiaceae flora of central Asia. Cornulaca alaschnica was discovered from Gansu, China, showing that the Chinese Chenopodiaceae flora certainly has contact with the Mediterranean Chenopodiaceae flora. The contact of southeastern China with the Australia Chenopodiaceae flora, however, is very weak.  相似文献   

2.
藜科植物的起源、分化和地理分布   总被引:27,自引:0,他引:27  
全球藜科植物共约130属1500余种,广泛分布于欧亚大陆、南北美洲、非洲和大洋洲的半干旱及盐碱地区。它基本上是一个温带科,对亚热带和寒温带也有一定的适应性。本文分析了该科包含的1l族的系统位置和分布式样,以及各个属的分布区,提出中亚区是现存藜科植物的分布中心,原始的藜科植物在古地中海的东岸即华夏陆台(或中国的西南部)发生,然后向干旱的古地中海沿岸迁移、分化,产生了环胚亚科主要族的原始类群;起源的时间可能在白垩纪初,冈瓦纳古陆和劳亚古陆进一步解体的时期。文章对其迁移途径及现代分布式样形成的原因进行了讨论。  相似文献   

3.
We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. Instead, they indicate that most lineages arrived in Australia via long-distance dispersal. Some lineages (e.g. the Halosarcia lineage) may have used the Indonesian archipelagos as stepping stones. The authors are aware that estimates of diversification times using a molecular clock can be subject to considerable levels of error. Our estimates of the age of Australian chenopod lineages based on three alternative fossils were made independently from any knowledge about shifts in climatic and geographical conditions in Australia during the times of arrival. In most cases, however, the paleoclimatic scenario indicates habitat shifts suitable for the respective chenopod colonizer, which corroborates our findings and provides a plausible scenario.  相似文献   

4.
刘尊驰  刘华峰  赵丹  罗宁  孙园园  郝晓冉  刘彤 《生态学报》2015,35(18):5957-5965
以新疆准噶尔盆地藜科猪毛菜属植物紫翅猪毛菜(Salsola affinis C.A.Mey)、钠猪毛菜(Salsola nitraria Pall)为研究对象,用繁殖分配比例的方法对比分析了两种猪毛菜不同海拔同一种群内不同个体大小繁殖分配的特点,并用异速生长模型分析了不同海拔繁殖生物量与营养生物量之间分配与个体大小的依赖关系。结果发现:1)不同海拔繁殖生物量(R)与营养生物量(V)呈不同程度的异速生长。紫翅猪毛菜随海拔的升高R-V的异速生长斜率显著升高,截距随海拔的升高没有显著增加;而钠猪毛菜的斜率随海拔升高显著降低,截距则显著升高。2)紫翅猪毛菜在较低海拔个体大小与繁殖分配呈负相关,在较高海拔呈正相关;钠猪毛菜在较低海拔个体大小与繁殖分配呈正相关,在较高海拔呈负相关;两种猪毛菜繁殖分配的适应对策相反。3)将同一种群个体大小分成大、中、小3种类型,多重比较发现紫翅猪毛菜在较低海拔,中小个体的繁殖分配显著高于大个体的繁殖分配;在较高海拔,大个体的繁殖分配显著高于中小个体的繁殖分配。钠猪毛菜在较低海拔,大个体的繁殖分配显著高于中、小个体的繁殖分配;在较高海拔,小个体的繁殖分配显著高于大、中个体的繁殖分配。综合分析认为:两个物种随海拔变化产生不同的繁殖分配策略,除遗传效应外,环境和个体大小对钠猪毛菜繁殖分配的变化均产生重要影响,而紫翅猪毛菜繁殖分配的变化主要由海拔差异导致。由于微生境对同一种群的个体大小产生影响,进而产生不同的繁殖分配模式,所以在干旱区更应重视个体大小对繁殖分配的影响。  相似文献   

5.
Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equations (MME) were used to generate best linear unbiased predictors (BLUPs) of disease severity reaction to CGS among 89 species of plants related to S. tragus. The MME provided: (1) disease assessments for rare and difficult or impossible to grow species, (2) environmentally independent measures of disease severity, (3) measures of disease severity for species versus a sample of material tested in a greenhouse, (4) objective indicators of susceptible and non-susceptible species, (5) a means to objectively compare disease on targets versus non-targets. Of the 89 species evaluated by the MME, eight native N. American species were predicted to be susceptible. As a result of these predictions, these eight species were further evaluated to determine the amount of actual damage caused by CGS. This was done by comparing root and shoot areas and weights between non-inoculated plants and plants inoculated with CGS. Results showed that several of the species exhibited some minor reduction in root weight and root area, but none of the species had any damage to above-ground plant parts. This supports the BLUP output in the initial host range determination tests. As a result of both analyses, there is no evidence that CGS would cause any non-target effects in nature.  相似文献   

6.
The eriophyid mite, Aceria salsolae de Lillo and Sobhian, is being evaluated as a prospective classical biological control agent of invasive alien tumbleweeds, including Salsola tragus, S. collina, S. paulsenii and S. australis, in North America. Previous laboratory experiments to determine the host specificity of the mite indicated that it could sometimes persist and multiply on some nontarget plants, including Bassia hyssopifolia and B. scoparia. These are both European plants whose geographic range overlaps that of the mite, but the mite has never been observed on them in the field. A field experiment was conducted in Italy to determine if the mite would infest and damage these plants under natural outdoor conditions. The results indicate that this mite does not attain significant populations on these nontarget plants nor does it significantly damage them. Salsola tragus was heavily infested by A. salsolae, and plant size was negatively correlated to the level of infestation. Although S. kali plants were also infested, their size did not appear to be affected by the mites. The other nontarget plants were not as suitable for the mite in the field as in previous laboratory experiments. We conclude that there would be no significant risk to nontarget plants as a result of using A. salsolae as a biological agent to control Salsola species in North America.  相似文献   

7.
猪毛菜属(Salsola)是新疆干旱区分布最为丰富的被子植物属之一,是盐碱和荒漠区的先锋种和建群种,对西北干旱区植被恢复与建设具有巨大生态价值。基于新疆自然分布的33种猪毛菜属物种共741个分布数据,整合利用点格局法和物种分布模型法构建了物种丰富度(SR)、加权特有性指数(WE)和校正加权特有性指数(CWE)的分布格局。选取环境能量、水分可获得性、气候季节性、生境异质性、土壤条件和历史气候变化共6类19种生态因子,利用地理加权回归模型(GWR)探究了环境异质性对猪毛菜属物种丰富度的影响。结果显示:(1)基于现实点位模型和物种分布模型构建的物种丰富度具有一致性,均呈北高南低、西高东低的破碎化分布趋势,但物种分布模型的结果在空间上比点格局法更连续,物种丰富度的高值区主要分布于准噶尔盆地南缘、准噶尔西部山地、天山西端和天山南脉南缘;(2)加权特有性指数和校正加权特有性指数的分布格局与物种丰富度分布格局具有一定差异,其最大值集中分布于准噶尔盆地南缘、伊犁河谷和塔里木盆地西南缘;(3)GWR模型结果表明,海拔变幅、土壤酸碱度和最干月降水量是制约新疆分布的猪毛菜属丰富度和特有性分布的最重要因素。  相似文献   

8.
Golovinomyces is a strictly herb-parasitic genus in the Erysiphaceae. Host–parasite co-speciation was reported recently between the genus Golovinomyces and Asteraceae from molecular phylogenetic analyses. The Asteraceae originated in South America and latterly expanded their geographic distribution into the Northern Hemisphere. If the co-speciation between Golovinomyces and Asteraceae originated in South America, the geographic origin of Golovinomyces could be assumed to be South America. To address this question, Golovinomyces species from hosts of the tribe Mutisieae, an asteraceous tribe endemic to South America, were collected and the ITS and 28S rDNA regions sequenced. Results indicate that Oidium mutisiae and Golovinomyces leuceriae isolated from the Mutisieae do not belong at the base of the Golovinomyces tree. Instead, they are situated separately within two different clades of Golovinomyces isolates from the Northern Hemisphere. Therefore, the tribe Mutisieae is not the most early host of Golovinomyces. Present results suggest that Golovinomyces originated in the Northern Hemisphere, and not in South America. The new species Oidium reginae for the previous O. mutisiae on Mutisia decurrens is proposed.  相似文献   

9.
10.
Data from microscopic morphology, single-spore cultures, and DNA analyses of teleomorphs and anamorphs support the recognition of five species of Prosthecium with Stegonsporium anamorphs on Acer: P. acerinum sp. nov., the teleomorph of S. acerinum; P. acerophilum comb. nov., formerly known as Dictyoporthe acerophila; P. galeatum comb. nov., originally described as Massaria galeata; P. opalus sp. nov.; and P. pyriforme sp. nov., the teleomorph of S. pyriforme s. str. The morphology of both type specimens and freshly collected material was investigated. The teleomorphs have brown ellipsoidal ascospores with five distosepta and often a longitudinal distoseptum. The anamorphs of all species described here belong to Stegonsporium; their connection to the Prosthecium teleomorphs was demonstrated by morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. The anamorphs and teleomorphs of all five Prosthecium species are described and illustrated by LM images, and a key to these species is provided. As perceived from this work, S. pyriforme is restricted to Europe and does not occur in North America, whereas S. acerinum is restricted to North America, not found in Europe. The host associations given in the literature are revised and evidence is provided that only A. opalus, A. pseudoplatanus, and A. saccharum are confirmed hosts of Prosthecium with Stegonsporium anamorphs. Molecular phylogenetic analyses of tef1, ITS rDNA, and partial nuLSU rDNA sequences confirm that the species with Stegonsporium anamorphs are closely related to P. ellipsosporum, the generic type species. Stilbospora macrosperma is confirmed as the anamorph of P. ellipsosporum by DNA data of single spore isolates obtained from both ascospores and conidia.  相似文献   

11.
郭林 《菌物学报》1988,7(Z1):211-240
黑粉菌属是Roussel 1806年建立的,全世界记载有三百余种,主要寄生于禾本科,是经济作物及牧草的重要致病菌·长期以来,对黑粉菌的邢子使用过各种名称,如厚垣孢子,冬孢子及黑粉孢子等.本文采用黑粉孢子以区别锈菌的冬孢子. 芳’(1979)在《中国真菌总汇》中列出黑粉菌属五十种及一个变型.作者经过显微结构和超显微结构的研究,承认其中二十九种为正确名称,八种及一变型为异名,顶黑粉菌(Ustilago acrearus Berk.)由于错拼而被废弃.埃地黑粉菌(Ustilago emodensis Berk.)被转移至利罗粉菌属(Liroa).另有十一种黑粉菌因缺少标本留待今后订正.自1979年以后,杨信东(1983)增加黑粉菌属二种我国新纪录,K.范基和郭林(1986)描述一新种,四种新纪录.在本文中,作者描述一新种:鸢尾蒜黑粉(Ustilago ixiolirii Guo L) ,孢子堆生在蒴果内,不开裂,黑色,粉末状.黑粉孢子球形,近球形,稀椭圆形, 12.5-21×10-21μm,黑褐色,壁厚1-1.Sμm,纹饰脑状.是迄今生在石蒜科植物上唯一黑粉菌的种,其它几种黑粉菌均属条黑粉菌属.本文增加七种我国新纪录.共计四十九种,寄生于六科四十四属植物,主要是禾本科和蓼科.这仅是黑粉菌属研究的初步报告,在全国范围内大量采集黑粉菌标本后,作者相信会有更多新种和我国新纪录被发现.利罗黑粉菌属(Liroa)是从黑粉菌属(Ustaligo)分出的,此属为单种属.  相似文献   

12.
Downy mildew is probably the most widespread and potentially destructive global disease of spinach (Spinacia oleracea). The causal agent of downy mildew disease on various plants of Chenopodiaceae, including spinach, is regarded as a single species, Peronospora farinosa. In the present study, the ITS rDNA sequence and morphological data demonstrated that P. farinosa from S. oleracea is distinct from downy mildew of other chenopodiaceous hosts. Fifty-eight spinach specimens were collected or loaned from 17 countries of Asia, Europe, Oceania, North and South America, which all formed a distinct monophyletic group. No intercontinental genetic variation of the ITS rDNA within Peronospora accessions causing spinach downy mildew disease was found. Phylogenetic trees supported recognition of Peronospora from spinach as a separate species. Microscopic examination also revealed morphological differences between Peronospora specimens from Spinacia and P. farinosa s. lat. specimens from Atriplex, Bassia, Beta, and Chenopodium. Consequently, the name Peronospora effusa should be reinstated for the downy mildew fungus found on spinach. Here, a specimen of the original collections of Peronospora effusa is designated as lectotype.  相似文献   

13.
In anticipation of large-scale distribution of a Turkish isolate of Puccinia jaceae var. solstitialis in California for biological control of yellow starthistle (Centaurea solstitialis, YST), susceptibility of YST within the state was determined and a protocol for bulk inoculum production was developed. Inoculation was made of 62 field accessions of YST representative of the range of habitats in California. These were determined to be equally susceptible to infection by the isolate approved for release in the United States in 2003. To support a program to speed establishment by release at many locations statewide, protocols for artificial increase of inoculum were developed. Over 64 g of urediniospores were produced with a mass-production system under greenhouse conditions from 2003 to 2006. Yield of inoculum varied by season, with peak production occurring from early spring through early summer. A large-scale urediniospore harvest also was made from a field plot at Davis, California. Our results show that susceptibility of YST in California is not likely to limit establishment of P. jaceae for biological control, and that production of this or other obligate pathogenic fungi (biological control agent) is possible for support of statewide release and research programs.  相似文献   

14.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

15.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

16.
Most species of the genus Salsola (Chenopodiaceae) that have been examined exhibit C4 photosynthesis in leaves. Four Salsola species from Central Asia were investigated in this study to determine the structural and functional relationships in photosynthesis of cotyledons compared to leaves, using anatomical (Kranz versus non-Kranz anatomy, chloroplast ultrastructure) and biochemical (activities of photosynthetic enzymes of the C3 and C4 pathways, 14C labeling of primary photosynthesis products and 13C/12C carbon isotope fractionation) criteria. The species included S. paulsenii from section Salsola, S. richteri from section Coccosalsola, S. laricina from section Caroxylon, and S. gemmascens from section Malpigipila. The results show that all four species have a C4 type of photosynthesis in leaves with a Salsoloid type Kranz anatomy, whereas both C3 and C4 types of photosynthesis were found in cotyledons. S. paulsenii and S. richteri have NADP- (NADP-ME) C4 type biochemistry with Salsoloid Kranz anatomy in both leaves and cotyledons. In S. laricina, both cotyledons and leaves have NAD-malic enzyme (NAD-ME) C4 type photosynthesis; however, while the leaves have Salsoloid type Kranz anatomy, cotyledons have Atriplicoid type Kranz anatomy. In S. gemmascens, cotyledons exhibit C3 type photosynthesis, while leaves perform NAD-ME type photosynthesis. Since the four species studied belong to different Salsola sections, this suggests that differences in photosynthetic types of leaves and cotyledons may be used as a basis or studies of the origin and evolution of C4 photosynthesis in the family Chenopodiaceae.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
植物种间杂交是一种普遍自然现象,杂交往往造成植物表型及生理变异,从而改变杂种抗虫性。与亲本种相比,杂种抗虫性可能增强或减弱,也有可能处于与亲本相似水平。初生、次生代谢物的质变与量变是引起杂种抗虫性变异的重要原因。近年来,桉树杂交育种已在世界范围内广泛应用并取得了显著成效,桉树杂交种间抗虫性表现参差不齐,因此,桉树是研究杂交种抗虫性变异机制的理想材料。以2个桉树杂交种巨细桉DH201-2、巨尾桉G9及桉树重要害虫桉树枝瘿姬小蜂为研究对象,比较了2个杂交种与其纯亲本种[(巨桉×细叶桉),(巨桉×尾叶桉)]间的抗虫性差异;同时,综合比较了品系间叶片性状(叶片厚度、含水率、比叶面积)、初生化合物(C、N、可溶性糖、可溶性蛋白)及次生化合物(总酚、单宁)差异,以研究桉树杂交种抗虫性变异的理化机制。结果表明:DH201-2感染桉树枝瘿姬小蜂的虫瘿数目显著高于其双亲本种,而G9上虫瘿数目显著低于其双亲本种。DH201-2与G9的叶片厚度与巨桉相近,而显著薄于另一亲本种。DH201-2叶片含水率显著高于细叶桉、与巨桉相近;G9叶片含水率则显著低于其双亲本种。相似的是,DH201-2和G9的比叶面积均显著高于其双亲本种。初生化合物方面,DH201-2叶片可溶性糖和可溶性蛋白含量均显著高于其亲本种,N含量则仅高于细叶桉;而G9叶片可溶性蛋白含量虽高于其双亲本种,可溶性糖含量则无显著差异,N含量显著低于其双亲本种。次生化合物方面,DH201-2叶片总酚和单宁含量显著低于其双亲本种,而G9则显著高于其双亲本种。因此,与其亲本种相比,DH201-2感虫性增加,而G9抗虫性增加;与桉树枝瘿姬小蜂发育相关的营养指标(如含水率、可溶性糖、N含量)及次生防御物质(如总酚、缩合单宁)在桉树杂交种组织内的含量差异影响了桉树杂交种对桉树枝瘿姬小蜂的抗性。在全球推行桉树杂交育种且桉树害虫数量逐年增加的大背景下,应加强对桉树杂交种抗虫性机制研究,为选育高抗品系及桉树产业可持续发展提供理论指导。  相似文献   

18.
谢艳  白学良  宋丽  王宇 《西北植物学报》2015,35(7):1476-1481
通过对采自贵州省梵净山和内蒙古赛罕乌拉自然保护区的苔藓植物标本进行鉴定,发现了丛藓科的2个新分布种——卷叶薄齿藓(Leptodontium pungens)和北美赤藓(Syntrichia amphidiacea)。卷叶薄齿藓为中国新记录种,首次在中国贵州省梵净山发现,其主要特征为茎无中轴分化,具透明层,常分布于火山和温带高海拔地区。北美赤藓为内蒙古新分布种,发现于内蒙古赛罕乌拉自然保护区,其主要特征为叶腹面近叶尖处生有大量芽胞,成熟芽胞棕色,多细胞,圆柱状。本研究对卷叶薄齿藓和北美赤藓的形态特征和地理分布进行了具体描述,并提供了图版和分种检索表。  相似文献   

19.
Phoma macrostoma 94-44B was evaluated against 94 plant species in 34 botanical families, of economically important agricultural, horticultural and ornamental species, as well as target and nontarget weeds. Fifty-seven species from 28 families were found to be resistant to P. macrostoma, while 38 species from 12 families, six of which also contained resistant species, were found to be susceptible. Those families comprising both susceptible and resistant species included the Asteraceae, Brassicaceae, Fabaceae, Lamiaceae, Plantaginaceae and Rosaceae with the foremost three containing the largest numbers of susceptible species. P. macrostoma was pathogenic to many dicotyledonous plant species, but nonpathogenic to monocots. Commercial applications for weed management in turfgrass, agriculture, horticulture and forestry seem probable, while domestically management of weeds in lawns, transplanted ornamental and annual flowering species may provide alternative markets.  相似文献   

20.
【目的】并蛎蚧属盾蚧科并蛎蚧属,该虫食性杂,危害植物种类多,极易随水果、苗木、景观花卉植物等寄主传播入境。并蛎蚧分布于美国、日本和我国台湾省,在我国大陆地区尚未见该虫的发生报道。2016年5月山西口岸从来自台北的水果释迦上截获了并蛎蚧,为我国大陆首次截获。【方法】通过显微形态特征的观察和测量进行种类鉴定,并研究并蛎蚧的生物学、生态学相关资料,对其进行风险评估。【结果】并蛎蚧与近似种的主要区别:中臀叶与第二臀叶愈合中间有腺刺,有第三对臀叶,中臀叶有向内延伸的硬化区。通过风险评估认为,来自我国台湾、日本的并蛎蚧入侵我国大陆的风险较大。并蛎蚧在大陆亚热带地区的定殖和扩散风险很大。【结论】我国大陆地区的气候条件、植物种类可为并蛎蚧的定殖提供可能的适生条件,各口岸应对进境的并蛎蚧寄主植物加强检验检疫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号