首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the effect and associated cell signaling mechanisms of indole-3-carbinol (I3C) on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of cultured vascular smooth muscle cells (VSMCs) and neointima formation in a carotid injury model. Our data demonstrated that I3C inhibited PDGF-BB-induced proliferation of VSMCs in a dose-dependent manner without causing cell cytotoxicity, as assessed by 5-bromo-2′-deoxyuridine incorporation and WST-1 assays. Further studies revealed that the antiproliferative effect of I3C was caused by the arrest of cells in both the G0/G1 and S phases. Moreover, I3C treatment inhibited migration of VSMCs and partly reversed the expression of smooth-muscle-specific contractile markers. We also demonstrated that I3C-induced growth inhibition was associated with an inhibition of the expression of cyclin D1 and cyclin-dependent kinase 4/6, as well as an increase in p27Kip1 levels in PDGF-stimulated VSMCs. These beneficial effects of I3C on VSMCs appeared to be at least partly mediated by the inhibition of Akt and the subsequent activation of glycogen synthase kinase (GSK) 3β. Furthermore, using a mouse carotid artery injury model, we found that treatment with 150 mg/kg I3C resulted in a significant reduction of the neointima/media ratio and cells positive for proliferating cell nuclear antigen. These results demonstrate that I3C can suppress the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury via inhibition of the Akt/GSK3β pathway and suggest that this might be feasible as part of a therapeutic strategy for vascular proliferative diseases.  相似文献   

2.
Aberrant growth of vascular smooth muscle cells (VSMCs) is a major cellular event in the pathogenesis of many proliferative vascular diseases. Recently, microRNA-31 (miR-31) has been found to play a critical role in cancer cell proliferation. However, the biological role of miR-31 in VSMC growth and the mechanisms involved are currently unknown. In the present study, the expression of rat mature miR-31 (rno-miR-31) was determined in cultured VSMCs and in rat carotid arteries. We identified that rno-miR-31 is an abundant miRNA in VSMCs, and its expression was significantly increased in proliferative VSMCs and in vascular walls with neointimal growth. The up-regulation of rno-miR-31 in proliferative VSMCs was inhibited by the inhibitor of mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK). By both gain-of-function and loss-of-function approaches, we demonstrated that rno-miR-31 had a proproliferative effect on VSMCs. We further identified that LATS2 (large tumor suppressor homolog 2) is a downstream target gene product of rno-miR-31 that is involved in rno-miR-31-mediated effect on VSMC proliferation. The LATS2 as a target gene protein of rno-miR-31 is verified in vivo in balloon-injured rat carotid arteries. The results suggest that MAPK/ERK/miR-31/LATS2 may represent a novel signaling pathway in VSMC growth. miR-31 is able to enhance VSMC proliferation via its downstream target gene product, LATS2.  相似文献   

3.
The purpose of this study was to determine the efficacy and the possible mechanism of action of the synthesized drug isoeugenodilol (a new third-generation β-adrenoceptor blocker) on the growth factor-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a rat carotid arterial balloon injury model. Isoeugenodilol significantly inhibited 10% FBS, 20 ng/ml PDGF-BB, and 20 ng/ml vascular endothelial growth factor (VEGF)-induced proliferation. In accordance with these findings, isoeugenodilol revealed blocking of the FBS-inducible progression through the G0/G1 to the S phase of the cell cycle in synchronized cells. Neointimal formation, measured 14 days after injury, was reduced by the oral administration of isoeugenodilol (10 mg/kg/day). In an in vitro assay, isoeugenodilol inhibited the migration of VSMCs stimulated by PDGF-BB. These findings indicate that isoeugenodilol shows an inhibitory potency on neointimal formation due to inhibition of both migration and proliferation of VSMCs. In addition, isoeugenodilol in concentration-dependent manner decreased the levels of phosphorylated ERK1/2 in both VSMCs and balloon-injured carotid arteries. The levels of phosphorylated MEK1/2 and Pyk2 as well as intracellular Ca2+ and reactive oxygen species (ROS) were in concentration-dependent manner reduced by isoeugenodilol. Taken together, these results indicate that isoeugenodilol may suppress mitogen-stimulated proliferation and migration partially through inhibiting cellular ROS and calcium, and hence, through activation of the Pyk2-ERK1/2 signal pathway. This suggests that isoeugenodilol has potential for the prevention of atherosclerosis and restenosis.  相似文献   

4.
Ouyang P  Peng LS  Yang H  Peng WL  Wu WY  Xu AL 《生理学报》2003,55(2):128-134
研究观察了重组人白介素10(rhIL-l0)对晚期糖基化终产物(AGE)刺激下离体大鼠胸主动脉血管平滑肌细胞增殖及对SD大鼠血管损伤后新生内膜增殖的影响。体外培养大鼠主动脉血管平滑肌细胞,采用MTS/PES法确定血管平滑肌细胞的增殖状态;应用流式细胞术测定细胞周期;利用p44/42磷酸化抗MAPK抗体的蛋白免疫印迹法测定p44/42 MAPK磷酸化蛋白表达。利用大鼠颈动脉血管损伤模型,观察rhIL—10对新生内膜增殖的影响。结果显示:(1)AGE处理组与对照组相比,AGE对血管平滑肌细胞增殖具有明显的刺激作用(P<0.05)。rhIL-l0单独应用对血管平滑肌细胞生长没有影响(P>0.05)。在AGE刺激下,低至100ng/ml的rhIL-l0可抑制血管平滑肌细胞的生长(P<0.05)。(2)流式细胞术测定的结果显示,rhIL—10可以使AGE作用下的VSMC大部分处于Go/G1期,与对照组相比有明显差异(P<0.01)。(3)AGE对p44/p42 MAPK磷酸化蛋白表达有显著的增强作用,此作用可被rhIL—10抑制(P<0.001)。(4)大鼠颈动脉损伤后,rhIL—10治疗组的动脉血管新生内膜/中层面积比低于对照组约45%(P<0.01)。表明抗炎细胞因子rhIL—10可抑制AGE诱导的大鼠血管平滑肌细胞增殖和血管新生内膜的增殖。  相似文献   

5.
6.
The proliferation of vascular smooth muscle cells (VSMCs) plays a major role in the pathogenesis of many cardiovascular diseases. Geminin regulates DNA replication and cell cycle progression and plays a key role in the proliferation of cancer cells. We therefore hypothesized that geminin regulates the proliferation of VSMCs. The present study demonstrates that the level of geminin expression was low in quiescent VSMCs (approximately 90% and 10% of cells in the G1 and in S/G2/M phases of the cell cycle, respectively), increased as more cells entered in S/G2/M, and then decreased as cells exited S/G2/M. Further, angiotensin II and norepinephrine stimulated expression of geminin in VSMCs. However, the DNA content, nuclear morphology, percentage of cells at different stages of the cell cycle, and rate of proliferation of VSMCs from which geminin was either depleted or overexpressed were all similar. These findings indicate geminin functions differently in VSMCs than it does in cancer cell lines and that it may provide a target for treating cancers without affecting normal cells.  相似文献   

7.
Kim TJ  Kang YJ  Lim Y  Lee HW  Bae K  Lee YS  Yoo JM  Yoo HS  Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.  相似文献   

8.
9.
Aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of cardiovascular diseases including coronary heart disease, restenosis and atherosclerosis. MicroRNAs are a class of small, non-coding and endogenous RNAs that play critical roles in VSMCs function. In this study, we showed that PDGF-bb, as a stimulant, promoted VSMCs proliferation and suppressed the expression of miR-599. Moreover, overexpression of miR-599 inhibited VSMCs proliferation and also suppressed the PCNA and ki-67 expression. In addition, we demonstrated that ectopic expression of miR-599 repressed the VSMCs migration. We also showed that miR-599 inhibited type I collagen, type V collagen and proteoglycan expression. Furthermore, we identified TGFb2 as a direct target gene of miR-599 in VSMCs. Overexpression of TGFb2 reversed miR-599-induced inhibition of VSMCs proliferation and type I collagen, type V collagen and proteoglycan expression. In conclusion, our findings suggest miR-599 plays a crucial role in controlling VSMCs proliferation and matrix gene expression by regulating TGFb2 expression.  相似文献   

10.
11.
Vascular smooth muscle cell (VSMC) phenotypic modulation and proliferation are critical cellular events in the development of a variety of proliferative vascular diseases. However, the molecular mechanisms involved in cellular events are still unclear. MicroRNAs (miRNAs) represent a novel class of small, non-coding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. In a previous study, we identified that miR-145 is the most abundant miRNA in normal arteries and VSMCs. However, the roles of miR-145 in VSMC biology and vascular disease are unknown. In our recent Circulation Research article, we found that the expression of miR-145 is significantly downregulated in dedifferentiated VSMCs and in balloon-injured arteries. Moreover, both in vitro and in vivo studies demonstrated that miR-145 is a critical modulator of VSMC phenotype and proliferation. This review article summarizes the current research progress regarding the roles of miR-145 in VSMC biology and discusses the potential therapeutic opportunities surrounding this miRNA in vascular disease.  相似文献   

12.
Vascular remodeling is characterized by the aggregation of vascular smooth muscle cells (VSMCs) in intima. Previous studies have demonstrated that dehydroepiandrosterone (DHEA), a steroid hormone, can reverse vascular remodeling. However, it is still far clear that whether and how DHEA participates in the modulation of VSMCs activation and vascular remodeling. VSMCs were obtained from the thoracic aorta of SD rats. Cell proliferation was evaluated by CCK-8 assay and BrdU assay. To measure VSMCs migration activity, a transwell chamber assay was performed. Quantitative real-time RT-PCR and western blot were used to explore the molecular mechanisms. ROS generation by VSMCs was measured by DCF fluorescence. NADPH oxidase activity and SOD activity were measured by the corresponding kits. NF-κB activity was detected by NF-κB luciferase reporter gene assay. A rat carotid artery balloon injury model was built to evaluate the neointimal formation, and plasma PGF2 was measured by ELISA. Our results showed that DHEA significantly inhibited VSMCs proliferation after angiotensin (Ang II) stimulation by down-regulation of NADPH oxidase activity and ERK1/2 phosphorylation. Ang II can increase IL-6 and MCP-1 expression, but DHEA reverses these changes via inhibiting p38-MAPK/NF-κB (p65) signaling pathway. DHEA has no significant effects on VSMCs phenotype transition, but can reduce the neointimal to media area ratio after balloon injury. DHEA can alleviate oxidative stress and inflammation in VSMCs via ERK1/2 and NF-κB signaling pathway, but has no effect on VSMCs phenotype transition. Furthermore, DHEA attenuates VSMCs activation and neointimal formation after carotid injury in vivo. Taken together, DHEA might be a promising treatment for vascular injury under pathological condition.  相似文献   

13.
Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:MβCD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:MβCD treatment. Moreover, curcumin abrogated the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:MβCD, which led to a suppression of AP-1 promoter activity stimulated by Chol:MβCD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:MβCD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:MβCD. Taking together, our data suggest curcumin inhibits Chol:MβCD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.  相似文献   

14.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

15.
Although TAK1 has been implicated in inflammation and oxidative stress, its roles in vascular smooth muscle cells (VSMCs) and in response to vascular injury have not been investigated. The present study aimed to investigate the role of TAK1 in modulating oxidative stress in VSMCs and its involvement in neointima formation after vascular injury. Double immunostaining reveals that vascular injury induces a robust phosphorylation of TAK1 (Thr187) in the medial VSMCs of injured arteries in wildtype mice, but this effect is blocked in CD40-deficient mice. Upregulation of TAK1 in VSMCs is functionally important, as it is critically involved in pro-oxidative and pro-inflammatory effects on VSMCs and eventual neointima formation. In vivo, pharmacological inhibition of TAK1 with 5Z-7-oxozeaenol blocked the injury-induced phosphorylation of both TAK1 (Thr187) and NF-kB/p65 (Ser536), associated with marked inhibition of superoxide production, 3-nitrotyrosine, and MCP-1 in the injured arteries. Cell culture experiments demonstrated that either siRNA knockdown or 5Z-7-oxozeaenol inhibition of TAK1 significantly attenuated NADPH oxidase activation and superoxide production induced by CD40L/CD40 stimulation. Co-immunoprecipitation experiments indicate that blockade of TAK1 disrupted the CD40L-induced complex formation of p22phox with p47phox, p67phox, or Nox4. Blockade of TAK1 also inhibited CD40L-induced NF-kB activation by modulating IKKα/β and NF-kB p65 phosphorylation and this was related to reduced expression of proinflammatory genes (IL-6, MCP-1 and ICAM-1) in VSMCs. Lastly, treatment with 5Z-7-oxozeaenol attenuated neointimal formation in wire-injured femoral arteries. Our findings demonstrate previously uncharacterized roles of TAK1 in vascular oxidative stress and the contribution to neointima formation after vascular injury.  相似文献   

16.
The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P(1), S1P(2) and S1P(3). S1P(1) expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular integrity by contributing to eNOS activation, inhibiting vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled mechanisms. By contrast, S1P(2), is expressed in high levels on vascular smooth muscle cells (VSMCs) and certain types of tumor cells, inhibiting Rac and cell migration via a G(12/13)-and Rho-dependent mechanism. In rat neointimal VSMCs, S1P(1) is upregulated to mediate local production of platelet-derived growth factor, which is a key player in vascular remodeling. S1P(3) expressed on endothelial cells also mediates chemotaxis toward S1P and vasorelaxation via NO production in certain vascular bed, playing protective roles for vascular integrity. S1P(3) expressed on VSMCs and cardiac sinoatrial node cells mediates vasopressor and negative chronotropic effect, respectively. In addition, S1P(3), together with S1P(2) and SPHK1, is suggested to play a protective role against acute myocardial ischemia. However, our recent work indicates that overexpressed SPHK1 is involved in cardiomyocyte degeneration and fibrosis in vivo, in part through S1P activation of the S1P(3) signaling. We also demonstrated that exogenously administered S1P accelerates neovascularization and blood flow recovery in ischemic limbs, suggesting its usefulness for angiogenic therapy. These results provide evidence for S1P receptor subtype-specific pharmacological intervention as a novel therapeutic approach to cardiovascular diseases and cancer.  相似文献   

17.
18.
19.
Tissue kallikrein 1 cleaves kininogen substrate to produce vasoactive kinin peptides that have been implicated in inhibiting neointimal hyperplasia in rat carotid arteries after balloon injury. However, its effects on the proliferation, cell cycle and its mechanisms, for example, cyclin-dependent kinase inhibitors, p27(Kip1) and p2l(Cip1) in vascular biology are poorly understood. The objective of this study was to explore the effects of human tissue kallikrein 1 (hTK1) mediated by recombinant adenovirus (Ad-hTK1) on proliferation and cell cycle of vascular smooth muscle cells (VSMCs) derived from spontaneously hypertensive rats induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. The results showed that, within a given multiplicity of infection (MOI) and time, the hTK1 gene delivery inhibited PDGF-BB-stimulating VSMCs growth in a concentration-dependent (20-100 MOI) and time-dependent (2-5 days) manner by cell counting, with a peak inhibition rate at 36.3% at 72 h (P < 0.01). In addition, hTK1 gene delivery significantly suppressed PDGF-BB-induced proliferation of VSMCs by methyl thiazolyl tetrazoliuin assay, and decreased the percentage of cells in the S phase and in DNA synthesis by flow cytometry, with a peak inhibition rate at 30.2 and 36.4%, respectively (P < 0.01). Western blot assay showed that the protein levels of p27(Kip1) and p2l(Cip1) in cells infected with Ad-hTK1 were much more abundant than those in cells only induced by PDGF-BB, with up-modulating rates at 51.8 and 58.7%, respectively (P < 0.001). We also observed that the effects of hTK1 gene delivery in inhibiting VSMCs proliferation, arresting cell cycling in G(0)/G(1) phase and up-regulating the expression of p27(Kip1) and p2l(Cip1) could be blocked by icatibant (Hoe 140), a specific bradykinin B(2) receptor antagonist. Taken together, these results demonstrated that hTK1 overexpressed by recombinant adenovirus potently inhibits VSMCs proliferation that is required for neointimal hyperplasia and restenosis, and may activate p27(Kip1) and p2l(Cip1) signaling pathways via bradykinin B(2) receptor.  相似文献   

20.

Background

JAK2/STAT3 pathway was reported to play an essential role in the neointima formation after vascular intima injury. However, little is known regarding this pathway to the whole layer injury after end-to-end arterial anastomosis (AA). Here, we investigated the role of JAK2/STAT3 pathway in common carotid arterial (CCA) anastomosis-induced cell proliferation, phenotypic change of vascular smooth muscle cells (VSMCs) and re-endothelialization.

Methods

CCAs of adult male Wistar rats were resected at 3, 7, 14, and 30 days after end-to-end CCA anastomosis. Activation of JAK2/STAT3 pathway was detected by Western blotting and Immunofluorescence, and expression of proliferating cell nuclear antigen (PCNA) was detected by Q-PCR and Western blotting. Under the treatment with AG490 (a JAK2 inhibitor), protein levels of JAK2, STAT3 and PCNA, morphological changes of artery, phenotypic change of VSMCs, and re-endothelialization were measured by Western blotting, H&E, Q-PCR, and Evans blue staining respectively.

Results

The protein levels of p-JAK2, p-STAT3, and PCNA were up-regulated, peaked on the 7th day in the vessel wall after AA. AG490 down-regulated the levels of p-JAK2, p-STAT3, and PCNA on the 7th-day-group, resulting in reduced vessel wall proliferation on the 7th and 14th day after AA. Besides, AG490 switched the phenotypic change of VSMCs after AA representing inhibited mRNA levels of synthetic phase markers (osteopoitin and SMemb) and up-regulated contractile phase markers (ASMA, SM2 and SM22α). Furthermore, AG490 did not affect the re-endothelialization process on all indicated time points after AA (the 3rd, 7th, 14th, and 30th day).

Conclusion

Our study indicated that JAK2/STAT3 signaling pathway played an important role on cell proliferation of the injured vessel wall, and probably a promising target for the exploration of drugs increasing the patency or reducing the vascular narrowness after AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号