首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000).  相似文献   

2.
Two types of DNA ligase, I and II, have been purified approximately 4,000-fold from mouse testes and 500-fold from nuclei of mouse spermatocytes. DNA ligase I and II consisted of single polypeptides with molecular weights of 95,000 and 65,000, respectively, according to the estimation by SDS-polyacrylamide gel electrophoresis and the AMP-binding assay. Ligase activities were higher in premeiotic spermatogonia and spermatocytes than those in liver and bone marrow cells. Moreover, DNA ligase II showed rapid increase during meiotic prophase and a decrease in round spermatids. Since this behavior of DNA ligase II is consistent with that of m-rec and DNA polymerase beta, both of which have been shown to be involved in DNA recombination in meiotic cells, DNA ligase II might be an enzyme which works at the final step of meiotic recombination reaction.  相似文献   

3.
R H Elder  J M Rossignol 《Biochemistry》1990,29(25):6009-6017
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I.  相似文献   

4.
Using specific antibodies against calf thymus DNA ligases I and II (EC 6.5.1.1), we have investigated the polypeptide structures of DNA ligases I and II present in the impure enzyme preparations, and estimated the polypeptides of DNA ligases I and II present in vivo. Immunoblot analysis of DNA ligase I after sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 130-kDa polypeptide as a major one in the enzyme preparations from calf thymus throughout the purification. In addition to the 130-kDa polypeptide, a 200-kDa polypeptide was detected in the enzyme preparations at the earlier steps of the purification, and a 90-kDa polypeptide was observed as a minor one in the enzyme preparations at the later steps of the purification. The polypeptides with molecular weight of 130 000 and 90 000 were detected by SDS-polyacrylamide gel electrophoresis of DNA ligase I-[3H]AMP complex. These results suggest that a 200-kDa polypeptide of DNA ligase I present in vivo is degraded to a 130-kDa polypeptide and then to a 90-kDa polypeptide during the isolation and purification procedures. On the other hand, the monospecific antibody against calf thymus DNA ligase II cross-reacted with only a 68 kDa polypeptide in the enzyme preparations throughout the purification, suggesting that the 68-kDa polypeptide is a single form of calf thymus DNA ligase II present in vivo as well as in vitro.  相似文献   

5.
Cells from patients with Bloom's syndrome (BS), an autosomal recessive disorder associated with an increased risk of cancer, exhibit genomic instability. Increased numbers of sister-chromatid exchanges (SCE) and delayed DNA chain maturation are typically observed in BS cells. To elucidate the basis for the previously reported decreased DNA ligase I activity in BS cells, simultaneous immunoblot and activity assays for ligase-[32P]AMP adduct formation were performed on extracts from BS and normal lymphoblastoid cell lines. Immunoblot analysis using antibody to DNA ligase I indicate that the amount of the major reactive protein (98 kDa) in normal and BS cells is similar. However, a 50-90% decrease was observed in the ligase activity of the 98-kDa polypeptide in high-SCE BS cells (HG1514 and GM3403c). In contrast, the activity in low-SCE BS cells (HG1554) did not differ significantly from that in normal cells. The data, together with mixing experiments, indicate that the defect in BS ligase I is due at least in part to the loss of ATP binding and/or hydrolytic activity and not to differences in numbers of protein molecules or inhibitory substances. These results suggest that mutation of the DNA ligase I gene may account for the primary metabolic defect in BS.  相似文献   

6.
A DNA ligase has been purified approximately 5000-fold, to near homogeneity, from the trypanosomatid Crithidia fasciculata. The purified enzyme contains polypeptides with molecular masses of 84 and 80 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both polypeptides formed enzyme-adenylate complexes in the absence of DNA, contained an epitope that is highly conserved between human and bovine DNA ligase I and yeast and vaccinia virus DNA ligases, and were identified in fresh lysates of C. fasciculata by antibodies raised against the purified protein. Hydrodynamic measurements indicate that the enzyme is an asymmetric protein of approximately 80 kDa. The purified DNA ligase can join oligo(dT) annealed to poly(dA), but not oligo(dT) annealed to poly(rA), and can ligate blunt-ended DNA fragments. The enzyme has a low Km for ATP of 0.3 microM. The DNA ligase absolutely requires ATP and Mg2+, and is inhibited by N-ethylmaleimide and by KCI. Substrate specificity, Km for ATP, and the conserved epitope all suggest that the purified enzyme is the trypanosome homologue of DNA ligase I.  相似文献   

7.
A new method to detect DNA ligase activity in situ after NaDodSO4 polyacrylamide gel electrophoresis has been developed. After renaturation of active polypeptides the ligase reaction occurs in situ by incubating the intact gel in the presence of Mg++ and ATP. Further treatment with alkaline phosphatase removes the unligated 5'-32P-end of oligo (dT) used as a substrate and active polypeptides having ligase activity are identified by autoradiography. Analysis on DNA sequencing gels of the oligo (dT) reaction products present in the activity bands ensures that the radioactive material detected in activity gels or in standard in vitro ligase assays corresponds unambiguously to a ligase activity. Using these methods, we have analysed the purified phage T4 DNA ligase, and the activities present in crude extracts and in purified fractions from monkey kidney (CV1-P) cells. The purified T4 enzyme yields one or two active peptides with Mr values of 60,000 and 70,000. Crude extracts from CV1-P cells contain several polypeptides having DNA ligase activity. Partial purification of these extracts shows that DNA ligase I isolated from hydroxylapatite column is enriched in polypeptides with Mr 200,000, 150,000 and 120,000, while DNA ligase II is enriched in those with Mr 60,000 and 70,000.  相似文献   

8.
A novel form of rat liver DNA ligase (molecular mass 100 kDa) can be differentiated from DNA ligase I by several biochemical parameters. It is a more heat-labile enzyme and unable to join blunt-ended DNA, even in the presence of poly(ethylene glycol) concentrations which stimulate such joining by DNA ligase I and T4 DNA ligase. It also lacks the AMP-dependent nicking/closing reaction, which is a property of all other DNA ligases tested so far, including DNA ligase I from rat liver. Both rat liver DNA ligases were inhibited by deoxyadenosinetriphosphate, however this inhibition was competitive with respect to ATP, for DNA ligase I (Ki 22 microM) and non-competitive for the 100-kDa DNA ligase (Ki 170 microM). These results support the idea that, when compared with other DNA ligases, the novel form of DNA ligase has a unique AMP-binding site, may have an absolute requirement for single-strand breaks and, furthermore, may have an altered reaction mechanism to that which is conserved from bacteriophage to mammalian DNA ligase I.  相似文献   

9.
Eukaryotic DNA ligases   总被引:9,自引:0,他引:9  
Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.  相似文献   

10.
DNA ligation catalyzed by all DNA ligases involves two intermediary steps, the formation of the ligase-AMP and the AMP-DNA complexes. A method was developed to purify and analyze the AMP-DNA intermediate from the DNA ligation reaction catalyzed by DNA ligases. This AMP-DNA complex was maximally accumulated by preincubation of human DNA ligase I or II with ATP, followed by interaction with the DNA substrate for 5 s at 0 degrees C. The gel-purified AMP-DNA complex maintained its property as a ligation intermediate. The AMP was directly linked to the 5'-phosphate of DNA with a pyrophosphate bond. The successive ligation reaction following the AMP-DNA complex formation required DNA ligase and Mg2+ ion but was inhibited by ATP and pyridoxal 5'-phosphate, indicating that the availability of the AMP binding site in the enzyme is essential for the completion of the reaction. Furthermore, the formation of the AMP-DNA complex and the subsequent DNA ligation were substrate specific for human DNA ligases I and II. These data, together with previously reported results, suggest that a major difference between human DNA ligases I and II is in their DNA-binding domains. The methods make it convenient to study in depth the kinetics of the overall DNA ligation.  相似文献   

11.
DNA ligase catalyzes the closure of single-strand nicks in double-stranded DNA that arise during replication and recombination. Inhibition of bacterial ligase is expected to cause chromosome degradation and cell death, making it an attractive target for new antibacterials. The prototypical bacterial ligase couples the hydrolysis of NAD(+) to phosphodiester bond formation between an adjacent 3'OH and 5'-terminal phosphate of nicked duplex DNA. The first step is the reversible formation of a ligase-adenylate from the reaction between apoenzyme and NAD(+). Inhibitors that compete with NAD(+) are expected to be bacterial specific because eukaryotic DNA ligases use ATP and differ in the sequence composition of their adenylation domain. We report here a high-throughput assay that measures the adenylation reaction specifically by monitoring ligase-AMP formation via scintillation proximity technologies. Escherichia coli DNA ligase was biotinylated in vivo; after reaction with radiolabeled NAD(+), ligase-[(3)H]AMP could be captured onto the streptavidin-coated surface of the solid scintillant. The method was ideal for high-throughput screening because it required minimal manipulations and generated a robust signal with minimal scatter. Certain adenosine analogs were found to inhibit the adenylation assay and had similar potency of inhibition in a DNA ligation assay.  相似文献   

12.
Different substrate specificities of the two DNA ligases of mammalian cells   总被引:12,自引:0,他引:12  
Mammalian cells contain the DNA ligases I and II. These enzymes show different molecular weights and heat labilities, and antibodies against ligase I do not inhibit ligase II. Here, the nonidentical substrate specificities of the enzymes are described. Under standard reaction conditions DNA ligase I, but not ligase II, catalyzes blunt-end joining of DNA, while ligase II is the only activity that joins oligo(dT) molecules hydrogen-bonded to poly(rA). These differences facilitate the distinction between the two enzymes and should permit further analysis of their functions.  相似文献   

13.
Three distinct DNA ligases in mammalian cells   总被引:17,自引:0,他引:17  
The major DNA ligase of proliferating mammalian cells, DNA ligase I, catalyzes the joining of single strand breaks in double stranded DNA and is active on a synthetic substrate of oligo(dT) hybridized to poly(dA). DNA ligase I does not catalyze the joining of an oligo(dT).poly(rA) substrate. Two additional DNA ligases, II and III, which can act on the latter substrate have been purified from calf thymus. DNA ligase II, which has been described previously, is a 72-kDa protein. DNA ligase III migrates as a 100-kDa protein in denaturing gel electrophoresis. Structural, immunochemical, and catalytic studies on the three DNA ligase activities strongly indicate that they are the products of three different genes.  相似文献   

14.
Mammalian DNA ligase I is presumed to act in DNA replication. Rabbit antibodies against the homogeneous enzyme from calf thymus inhibited DNA ligase I activity and consistently recognized a single polypeptide of 125 kDa when cells from an established bovine kidney cell line (MDBK) were lysed rapidly by a variety of procedures and subjected to immunoblotting analysis. After biosynthetic labeling of MDBK cells with [35S]methionine, immunoprecipitation experiments revealed a polypeptide of 125 kDa that did not appear when purified calf thymus DNA ligase I was used in competition. A 125-kDa polypeptide was adenylated when immunoprecipitated protein from MDBK cells was incubated with [alpha-32P]ATP. Thus, the apparent molecular mass of the initial translation product is identical or nearly so to that of the purified enzyme. The half-life of the protein is 7 h as determined by pulse-chase experiments in asynchronous MDBK cells. Immunocytochemistry and indirect immunofluorescence experiments showed that DNA ligase I is localized to cell nuclei.  相似文献   

15.
We have analyzed the expression of DNA ligase I protein during oogenesis and early development of Xenopus laevis. The protein is already present in stage I oocytes and then accumulates throughout oogenesis to reach a steady state level by stage VI. It remains at this level at least until tadpole stage. In stage VI oocytes DNA ligase I protein is almost exclusively localized in the germinal vesicle. We have partially purified a DNA ligase II activity from stage VI oocytes, unfertilized eggs, and stage 8 embryos. An 80-kDa polypeptide can be specifically adenylated in all three purified extracts. It is not recognized by antibodies directed against DNA ligase I and is active on oligo(dT)-poly(rA) substrate. It could therefore represent DNA ligase II protein. The presence of both DNA ligases I and II in oocytes and embryos is inconsistent with the DNA ligase model that had been previously proposed for amphibia.  相似文献   

16.
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-α forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-β, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.  相似文献   

17.
Vaccinia virus encodes a polypeptide with DNA ligase activity.   总被引:4,自引:0,他引:4       下载免费PDF全文
Vaccinia virus gene SalF 15R potentially encodes a polypeptide of 63 kD which shares 30% amino acid identity with S. pombe and S. cerevisiae DNA ligases. DNA ligase proteins can be identified by incubation with alpha-(32P)ATP, resulting in the formation of a covalent DNA ligase-AMP adduct, an intermediate in the enzyme reaction. A novel radio-labelled polypeptide of approximately 61 kD appears in extracts from vaccinia virus infected cells after incubation with alpha-(32P)ATP. This protein is present throughout infection and is a DNA ligase as the radioactivity is discharged in the presence of either DNA substrate or pyrophosphate. DNA ligase assays show an increase in enzyme activity in cell extracts after vaccinia virus infection. A rabbit antiserum, raised against a bacterial fusion protein of beta-galactosidase and a portion of SalF 15R, immune-precipitates polypeptides of 61 and 54 kD from extracts of vaccinia virus-infected cells. This antiserum also immune-precipitates the novel DNA ligase-AMP adduct, thus proving that the observed DNA ligase is encoded by SalF 15R.  相似文献   

18.
Partial purification of cyclic AMP-binding proteins from porcine thyroid cytosol was performed by gel filtration on Bio Gel 1.5 m followed by ion exchange chromatography on DEAE Sephadex A25. Three fractions presenting cyclic AMP-binding activities were resolved by gel filtration (I, II, III). Approximate molecular weights were respectively 280 000, 145 000 and 65 000. Fraction I was further resolved into two peaks (Ialpha and Ibeta) on DEAE-Sephadex A25. Fractions I, Ialpha, Ibeta comigrated with protein kinase activity whereas peaks II and III did not. These fractions differed with respect to the folling characteristics: rate and stability of cyclic AMP binding to isolated fractions were differently affected by pH (4.0 or 7.5). Electrophoretic mobility on polyacrylamide gels (5%) of fractions preincubated with cyclic [3H]AMP showed similar mobilities for Ialpha, Ibeta or II (Rf 0.37) whereas fraction III displayed a much greater mobility (RF 0.73); Scatchard plots were linear for fractions Ialpha, II and III with an apparent Kd in the same range (2 to 5 nM) whereas fraction Ibeta generated a biphasic plot with Kd 0.4 nM and 20 nM; cyclic [3H] AMP added to fraction I, Ialpha or Ibeta generated a cyclic [3H] AMP-binding protein complex of lower molecular weight as shown by Sephadex G 150 filtration; on the basis of the elution volume, this complex was not distinguished from fraction II. In the course of this work, we separated at the first step of purification (Bio Gel 1.5 m) a protein kinase not associated with cyclic AMP binding activity which exhibited marked specificity for protamine as compared to histone II A.  相似文献   

19.
Confluent T51B rat liver epithelial cells promptly began accumulating cyclic AMP-binding sites on their surfaces when they were stimulated from quiescence by serum growth factors in medium containing 1.8 mM Ca2+, but they began losing the accumulated binding sites shortly before initiating DNA replication. When the medium contained only 0.02 mM Ca2+, the cells still accumulated surface cyclic AMP-binding sites, but they did not initiate DNA replication and tended to continue accumulating the binding sites. The cyclic AMP-binding sites were eliminated completely by treating intact cells for 5 minutes with 0.005% trypsin (which did not damage the cells), and cyclic AMP caused them to be released from intact, undamaged cells into the medium. The binding sites also comigrated electrophoretically with purified regulatory subunits of type I cyclic AMP-dependent protein kinase, and to a lesser extent the regulatory subunit of type II cyclic AMP-dependent protein kinase. Therefore, it is likely that a transient accumulation of cyclic AMP-dependent protein kinases on the outer surface of the plasma membrane is part of the T51B rat liver cell's prereplicate program.  相似文献   

20.
The mechanism of action of purified wheat germ RNA ligase has been examined. ATP was absolutely required for the ligation of substrates containing 5'-OH or 5'-P and 2',3'-cyclic P or 2'-P termini. Ligation of 1 mol of 5'-P-2',3'-cyclic P-terminated poly(A) was accompanied by the hydrolysis of 1 mol of ATP to 1 mol each of AMP and PPi. Purified RNA ligase catalyzed an ATP-PPi exchange reaction, specific for ATP and dATP, and formed a covalent enzyme-adenylate complex that was detected by autoradiography following incubation with [alpha-32P]ATP and separation of the products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein doublet with a molecular weight of approximately 110 kDa, the major product detected by silver staining, was labeled in these reactions. Isolated E-AMP complex was dissociated by the addition of ligatable poly(A), containing 5'-P-2',3'-cyclic P termini, to yield AMP and by the addition of PPi to yield ATP. The unique feature of the reactions leading to an exchange reaction between ATP and PPi and to the formation of an E-AMP complex was their marked stimulation (up to 400-fold) by the addition of RNA. This property distinguishes the wheat germ RNA ligase from other known RNA and DNA ligases which catalyze ATP-PPi exchange reactions and form E-AMP complexes in the absence of substrate. Thus, RNA appears to function in two capacities in the wheat germ system: as a cofactor, to stimulate the reaction of the enzyme with ATP, and as an authentic substrate for ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号