首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Genome-wide association studies (GWASs) for many complex diseases, including inflammatory bowel disease (IBD), produced hundreds of disease-associated loci—the majority of which are noncoding. The number of GWAS loci is increasing very rapidly, but the process of translating single nucleotide polymorphisms (SNPs) from these loci to genomic medicine is lagging. In this study, we investigated 4,734 variants from 152 IBD associated GWAS loci (IBD associated 152 lead noncoding SNPs identified from pooled GWAS results + 4,582 variants in strong linkage-disequilibrium (LD) (r2 ≥0.8) for EUR population of 1K Genomes Project) using four publicly available bioinformatics tools, e.g. dbPSHP, CADD, GWAVA, and RegulomeDB, to annotate and prioritize putative regulatory variants. Of the 152 lead noncoding SNPs, around 11% are under strong negative selection (GERP++ RS ≥2); and ~30% are under balancing selection (Tajima’s D score >2) in CEU population (1K Genomes Project)—though these regions are positively selected (GERP++ RS <0) in mammalian evolution. The analysis of 4,734 variants using three integrative annotation tools produced 929 putative functional SNPs, of which 18 SNPs (from 15 GWAS loci) are in concordance with all three classifiers. These prioritized noncoding SNPs may contribute to IBD pathogenesis by dysregulating the expression of nearby genes. This study showed the usefulness of integrative annotation for prioritizing fewer functional variants from a large number of GWAS markers.  相似文献   

5.
6.
With the rising interest in the regulatory functions of long non-coding RNAs (lncRNAs) in complex human diseases such as cardiovascular diseases, there is an increasing need in public databases offering comprehensive and integrative data for all aspects of these versatile molecules. Recently, a variety of public data repositories that specialized in lncRNAs have been developed, which make use of huge high-throughput data particularly from next-generation sequencing (NGS) approaches. Here, we provide an overview of current lncRNA databases covering basic and functional annotation, lncRNA expression and regulation, interactions with other biomole-cules, and genomic variants influencing the structure and function of lncRNAs. The prominent lncRNA antisense noncoding RNA in the INK4 locus (ANRIL), which has been unequivocally associated with coronary artery disease through genome-wide association studies (GWAS), serves as an example to demonstrate the features of each individual database.  相似文献   

7.
长链非编码RNA(long non-coding RNAs, lncRNAs)是一类由长度大于200个核苷酸组成的长链非编码序列。lncRNAs具有较长的序列,使得lncRNAs具有复杂的二级及三级结构,这也是lncRNAs结合DNA、RNA和蛋白质及其行使复杂功能的结构基础。MicroRNA(miRNAs)是长度在19到25个核苷酸之间的非编码单链RNA分子,是目前研究最多的小分子非编码RNA。而lncRNAs通过结合或者螯合miRNA来调节miRNA丰度,发挥lncRNA的“海绵”作用,从而调控一系列的病理生理过程。lncRNAs及miRNA在呼吸系统疾病的发生、发展、治疗和预后起重要作用。本文就lncRNAs及其“海绵”作用对呼吸系统疾病的影响及可能的机制进行综述。  相似文献   

8.

Background

Previous studies in Drosophila and mammals have revealed levels of long non-coding RNAs (lncRNAs) sequence conservation that are intermediate between neutrally evolving and protein-coding sequence. These analyses compared conservation between species that diverged up to 75 million years ago. However, analysis of sequence polymorphisms within a species'' population can provide an understanding of essentially contemporaneous selective constraints that are acting on lncRNAs and can quantify the deleterious effect of mutations occurring within these loci.

Results

We took advantage of polymorphisms derived from the genome sequences of 163 Drosophila melanogaster strains and 174 human individuals to calculate the distribution of fitness effects of single nucleotide polymorphisms occurring within intergenic lncRNAs and compared this to distributions for SNPs present within putatively neutral or protein-coding sequences. Our observations show that in D.melanogaster there is a significant excess of rare frequency variants within intergenic lncRNAs relative to neutrally evolving sequences, whereas selection on human intergenic lncRNAs appears to be effectively neutral. Approximately 30% of mutations within these fruitfly lncRNAs are estimated as being weakly deleterious.

Conclusions

These contrasting results can be attributed to the large difference in effective population sizes between the two species. Our results suggest that while the sequences of lncRNAs will be well conserved across insect species, such loci in mammals will accumulate greater proportions of deleterious changes through genetic drift.  相似文献   

9.
Breast cancer (BC) is the leading cause of death by this disease in women worldwide. Among the factors involved in tumorigenesis, long non-coding RNAs (lncRNAs) and their differential expression have been associated. Differences in gene expression may be triggered by variations in DNA sequence, including single nucleotide polymorphisms (SNPs). In the present study, we analyzed the rs527616 (C>G), located in the lncRNA AQP4-AS1, using PCR-SSP in 306 BC patients and 312 controls, from a Brazilian population. In the BC group, the frequency found for CG heterozygotes was above the expected and the overdominant model is the best one to explain our results (OR: 1.70, IC 95%: 1.23-2.34, P<0.001). Furthermore, the SNP were associated with age at BC diagnosis and the risk genotype more frequent in the older age group. According to TCGA data, AQP4-AS1 is down-regulated in BC tissue, and the overexpression is associated with better prognoses, including Luminal A, HER2-, stage 1 of disease and smaller tumor. In conclusion, the CG genotype is associated with increased susceptibility in the southern Brazilian population. This SNP is mapped in the lncRNA AQP4-AS1, showing differential expression in BC samples. Based on these results, we emphasize the potential of the role of AQP4-AS1 in cancer.  相似文献   

10.
We applied genome-wide allele-specific expression analysis of monocytes from 188 samples. Monocytes were purified from white blood cells of healthy blood donors to detect cis-acting genetic variation that regulates the expression of long non-coding RNAs. We analysed 8929 regions harboring genes for potential long non-coding RNA that were retrieved from data from the ENCODE project. Of these regions, 60% were annotated as intergenic, which implies that they do not overlap with protein-coding genes. Focusing on the intergenic regions, and using stringent analysis of the allele-specific expression data, we detected robust cis-regulatory SNPs in 258 out of 489 informative intergenic regions included in the analysis. The cis-regulatory SNPs that were significantly associated with allele-specific expression of long non-coding RNAs were enriched to enhancer regions marked for active or bivalent, poised chromatin by histone modifications. Out of the lncRNA regions regulated by cis-acting regulatory SNPs, 20% (n = 52) were co-regulated with the closest protein coding gene. We compared the identified cis-regulatory SNPs with those in the catalog of SNPs identified by genome-wide association studies of human diseases and traits. This comparison identified 32 SNPs in loci from genome-wide association studies that displayed a strong association signal with allele-specific expression of non-coding RNAs in monocytes, with p-values ranging from 6.7×10−7 to 9.5×10−89. The identified cis-regulatory SNPs are associated with diseases of the immune system, like multiple sclerosis and rheumatoid arthritis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号