首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous work, we have shown that a spatially localized transmembrane pH gradient, produced by acid micro-injection near the external side of cardiolipin-containing giant unilamellar vesicles, leads to the formation of tubules that retract after the dissipation of this gradient. These tubules have morphologies similar to mitochondrial cristae. The tubulation effect is attributable to direct phospholipid packing modification in the outer leaflet, that is promoted by protonation of cardiolipin headgroups. In this study, we compare the case of cardiolipin-containing giant unilamellar vesicles with that of giant unilamellar vesicles that contain phosphatidylglycerol (PG). Local acidification also promotes formation of tubules in the latter. However, compared with cardiolipin-containing giant unilamellar vesicles the tubules are longer, exhibit a visible pearling, and have a much longer lifetime after acid micro-injection is stopped. We attribute these differences to an additional mechanism that increases monolayer surface imbalance, namely inward PG flip-flop promoted by the local transmembrane pH gradient. Simulations using a fully nonlinear membrane model as well as geometrical calculations are in agreement with this hypothesis. Interestingly, among yeast mutants deficient in cardiolipin biosynthesis, only the crd1-null mutant, which accumulates phosphatidylglycerol, displays significant mitochondrial activity. Our work provides a possible explanation of such a property and further emphasizes the salient role of specific lipids in mitochondrial function.  相似文献   

2.
The role of lipids in VDAC oligomerization   总被引:1,自引:0,他引:1  
Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the membrane. This study addresses the role of lipids in this process. We investigate the effect of cardiolipin (CL) and phosphatidylglycerol (PG), anionic lipids important for mitochondria metabolism and apoptosis, on VDAC oligomerization. By applying fluorescence cross-correlation spectroscopy to VDAC reconstituted into giant unilamellar vesicles, we demonstrate that PG significantly enhances VDAC oligomerization in the membrane, whereas cardiolipin disrupts VDAC supramolecular assemblies. During apoptosis, the level of PG in mitochondria increases, whereas the CL level decreases. We suggest that the specific lipid composition of the outer mitochondrial membrane might be of crucial relevance and, thus, a potential cue for regulating the oligomeric state of VDAC.  相似文献   

3.
Previous work [Hope et al. (1989) Biochemistry 28, 4181-4187] has shown that asymmetric transmembrane distributions of phosphatidylglycerol (PG) in PG-phosphatidylcholine (PC) large unilamellar vesicles can be induced in response to transbilayer pH gradients (delta pH). Here the mechanism of PG transport has been investigated. It is shown that PG movement in response to delta pH is consistent with permeation of the uncharged (protonated) form and that the half-time for transbilayer movement of the uncharged form can be on the order of seconds at 45 degrees C. This can result in rapid pH-dependent transmembrane redistributions of PG. The rate constant for transbilayer movement exhibits a large activation energy (31 kcal/mol) consistent with transport of neutral dehydrated PG where dehydration of the (protonated) phosphate presents the largest barrier to transmembrane diffusion. It is shown that acyl chain saturation, chain length, and the presence of cholesterol modulate the rate constants for PG transport in a manner similar to that observed for small nonelectrolytes.  相似文献   

4.
Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable.  相似文献   

5.
Cardiolipin is a four-tailed acidic lipid found predominantly within the inner membrane of mitochondria, and is thought to be a key component in determining inner membrane properties and potential. Thus, cardiolipin may be involved in the dynamics of the inner membrane characteristic invaginations (named cristae) that protrude into the matrix space. In previous studies, we showed the possibility to induce, by localized proton flow, a macroscopic cristae-like shape remodeling of an only-lipid model membrane mimicking the inner mitochondrial membrane. In addition, we reported a theoretical model describing the dynamics of a chemically driven membrane shape instability caused by a modification of the plane-shape equilibrium density of the lipids in the membrane. In the present work, we focus on the lipid-packing modifications observed in a model cardiolipin-containing lipid membrane submitted to pH decrease because this is the driving force of the instability. Laurdan fluorescence and ζ-potential measurements show that under pH decrease, membrane surface charge decreases, but that significant modification of the lipid packing is observed only for CL-containing membranes. Our giant unilamellar vesicle experiments also indicate that cristae-like morphologies are only observed for CL-containing lipid membranes. Taken together, these results highlight the fact that only a strong modulation of the lipid packing of the exposed monolayer leads to membrane shape instability and suggest that mitochondrial lipids, in particular the cardiolipin, play a specific role under pH modulation in inner mitochondrial membrane morphology and dynamics.  相似文献   

6.
The influence of a phospholipid transmembrane redistribution on the shape of nonspherical flaccid vesicles was investigated at a fixed temperature by optical microscopy. In a first series of experiments, a transmembrane pH gradient was imposed on egg phosphatidylcholine (EPC)-egg phosphatidylglycerol (EPG) (100:1) giant vesicles. The delta pH induced an asymmetric distribution of EPG. Simultaneously, discoid vesicles were transformed into tubular or a series of connected small vesicles. The fraction of phospholipid transfer necessary for a shape change from discoid to two connected vesicles was of the order of 0.1% of the total phospholipids. Additional lipid redistribution was accompanied by a sequence of shape changes. In a second series of experiments, lyso phosphatidylcholine (L-PC) was added to, or subtracted from, the external leaflet of giant EPC vesicles. The addition of L-PC induced a change from discoid to a two-vesicle state without further evolution, suggesting that lipid transfer and lipid addition are not equivalent. L-PC depletion from the outer leaflet generated stomatocyte-like vesicles. Whenever possible, we have determined whether the giant vesicles undergoing shape changes were unilamellar or multilamellar by measuring the elastic area compressibility modulus, K, by the micropipette assay (Kwok and Evans, 1981). Shape transformations triggered by phospholipid modification of the most external bilayer were indeed influenced by the presence of other underlying membranes that played a role comparable to that of a passive cytoskeleton layer. It appears that in real cells, invaginations of the plasma membrane or budding of organelles could be triggered by a phospholipid transfer from one leaflet to the other caused, for instance, by the aminophospholipid translocase which is present in eukaryotic membranes.  相似文献   

7.
In the presence of cardiolipin-containing small unilamellar vesicles, the antitumor compound adriamycin loses its ability to catalyse the flow of electrons from NADH to molecular oxygen through NADH dehydrogenase. The data strongly suggest that in the presence of cardiolipin the dihydroanthraquinone moiety is embedded in the phospholipid bilayer and thus inaccessible to the enzyme.  相似文献   

8.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0-50 mol % negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pI = 10.5). A similar pH dependence was observed for vesicles containing 50 mol % cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to alpha-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

9.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0–50 mol% negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pl = 10.5). A similar pH dependence was observed for vesicles containing 50 mol% cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to α-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

10.
(1) The effect of cytochrome c addition on the phospholipid structure of liposomes composed of cardiolipin, phosphatidylserine, phosphatidylglycerol, phosphatidylcholine or phosphatidylethanolamine in a pure form or in mixtures was investigated by 31P-NMR and freeze-fracture techniques. (2) Cytochrome c specifically induces the hexagonal Hii phase and possibly an inverted micellar structure of part of the phospholipids in cardiolipin-containing model membranes. (3) These results are compared with the effect of Ca2+ on cardiolipin and are discussed in relation to the structure and function of the inner mitochondrial membrane.  相似文献   

11.
Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria.  相似文献   

12.
Drp1 is a dynamin-like GTPase that mediates mitochondrial and peroxisomal division in a process dependent on self-assembly and coupled to GTP hydrolysis. Despite the link between Drp1 malfunction and human disease, the molecular details of its membrane activity remain poorly understood. Here we reconstituted and directly visualized Drp1 activity in giant unilamellar vesicles. We quantified the effect of lipid composition and GTP on membrane binding and remodeling activity by fluorescence confocal microscopy and flow cytometry. In contrast to other dynamin relatives, Drp1 bound to both curved and flat membranes even in the absence of nucleotides. We also found that Drp1 induced membrane tubulation that was stimulated by cardiolipin. Moreover, Drp1 promoted membrane tethering dependent on the intrinsic curvature of the membrane lipids and on GTP. Interestingly, Drp1 concentrated at membrane contact surfaces and, in the presence of GTP, formed discrete clusters on the vesicles. Our findings support a role of Drp1 not only in the formation of lipid tubes but also on the stabilization of tightly apposed membranes, which are intermediate states in the process of mitochondrial fission.  相似文献   

13.
In the present study, we investigated the dynamic alterations in mitochondrial lipids occurring during Fas- and radiation-induced cell death. Cross-linking of CD-95 on Fas-sensitive Jurkat cells produced rapid increases in two species of mitochondrial phosphatidylglycerol. By 2.5 h, phosphatidylglycerol decreases below basal levels, concomitant with an increase in mitochondrial ceramide. In addition, between 1.5 and 3.0 h after anti-Fas crosslinking, there is a continued loss of mitochondrial cardiolipin. When gamma irradiation was used to induce apoptosis, similar lipid changes occurred, although with somewhat slower kinetics. Fas-resistant Jurkat cells exhibited phosphatidylglycerol as the dominant lipid species in their mitochondria. Following Fas ligation, there is a transient decrease in phosphatidylglycerol, but cardiolipin and ceramide remained unchanged. The high basal levels of PG in Fas-resistant cells and the increase in PG levels in Fas-sensitive cells undergoing apoptosis was determined to be due to increased PGP synthase activity. Thus, critical mitochondrial lipids could potentially serve as novel targets in regulating the apoptotic process.  相似文献   

14.
The influence of a transmembrane pH gradient on the Ca(2+)-induced fusion of phospholipid vesicles, containing free fatty acids, has been investigated. Large unilamellar vesicles composed of an equimolar mixture of cardiolipin, dioleoylphosphatidylcholine, and cholesterol, containing 20 mol % oleic acid, were employed. Fusion was measured using a kinetic assay for lipid mixing, based on fluorescence resonance energy transfer. At pH 7.5, but not at pH 6.0, in the absence of a pH gradient, oleic acid stimulates the fusion of the vesicles by shifting the Ca2+ threshold concentration required for aggregation and fusion of the vesicles from about 13 mM to 10 mM. In the presence of a pH gradient (at an external pH of 7.5 and a vesicle interior pH of 10.5), the vesicles exhibit fusion characteristics similar to vesicles that do not contain oleic acid at all, consistent with an effective sequestration of the fatty acid to the inner monolayer of the vesicle bilayer induced by the imposed pH gradient. The kinetics of the fusion process upon simultaneous generation of the pH gradient across the vesicle bilayer and initiation of the fusion reaction show that the inward movement of oleic acid in response to the pH gradient is extremely fast, occurring well within 1 s. Conversely, dissipation of an imposed pH gradient, by addition of a proton ionophore during the course of the fusion process, results in a rapid enhancement of the rate of fusion due to reequilibration of the oleic acid between the two bilayers leaflets.  相似文献   

15.
The influence of membrane pH gradients on the transbilayer distribution of some common phospholipids has been investigated. We demonstrate that the transbilayer equilibrium of the acidic phospholipids egg phosphatidylglycerol (EPG) and egg phosphatidic acid (EPA) can be manipulated by membrane proton gradients, whereas phosphatidylethanolamine, a zwitterionic phospholipid, remains equally distributed between the inner and outer monolayers of large unilamellar vesicles (LUVs). Asymmetry of EPG is examined in detail and demonstrated by employing three independent techniques: ion-exchange chromatography, 13C NMR, and periodic acid oxidation of the (exterior) EPG headgroup. In the absence of a transmembrane pH gradient (delta pH) EPG is equally distributed between the outer and inner monolayers of LUVs. When vesicles composed of either egg phosphatidylcholine (EPC) or DOPC together with 5 mol % EPG are prepared with a transmembrane delta pH (inside basic, outside acidic), EPG equilibrates across the bilayer until 80-90% of the EPG is located in the inner monolayer. Reversing the pH gradient (inside acidic, outside basic) results in the opposite asymmetry. The rate at which EPG equilibrates across the membrane is temperature dependent. These observations are consistent with a mechanism in which the protonated (neutral) species of EPG is able to traverse the bilayer. Under these circumstances EPG would be expected to equilibrate across the bilayer in a manner that reflects the transmembrane proton gradient. A similar mechanism has been demonstrated to apply to simple lipids that exhibit weak acid or base characteristics [Hope, M. J., & Cullis, P. R. (1987) J. Biol. Chem 262, 4360-4366]  相似文献   

16.
The reverse phase evaporation procedure was used to prepare large unilamellar liposomes containing bacteriorhodopsin. Electron microscopy showed that proteoliposomes were unilamellar and fairly uniform in size provided the preparation was extruded through calibrated nucleopore membranes : the vesicles have diameters around 200 nm. The spectral properties of the bacteriorhodopsin in the large liposomes resembled those of bacteriorhodopsin in purple membrane. Furthermore, the chromoprotein in the reconstituted vesicles had an inside-out orientation and on illumination, translocated protons efficiently from the external medium into the vesicles in the presence of the ionophore valinomycin. In the absence of the latter, a light-independent transmembrane potential of about 60 mV was measured from thiocyanate distribution. In the presence of valinomycin, this transmembrane electrical potential was abolished and then a light-dependent transmembrane pH gradient of about 2 pH units could be generated.  相似文献   

17.
One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c-cardiolipin complex structure carried out by different authors mainly on unilamellar cardiolipin-containing phospholipid liposomes are critically analyzed. The principal conclusion from the published papers is that cytochrome c-cardiolipin complex is formed by attachment of a cytochrome c molecule to the membrane surface via electrostatic interactions and the subsequent penetration of one of the fatty-acid cardiolipin chains into the protein globule, this being associated with hydrophobic interactions that break the >Fe…S(Met80) coordinate bond and giving rise to appearance of cytochrome c peroxidase activity. Nevertheless, according to data obtained in our laboratory, cytochrome c and cardiolipin form spherical nanoparticles in which protein is surrounded by a monolayer of cardiolipin molecules. Under the action of cooperative forces, the protein in the globule expands greatly in volume, its conformation is modified, and the protein becomes a peroxidase. In extended membranes, such as giant monolayer liposomes, and very likely in biological membranes, the formation of nanospheres of cytochrome c-cardiolipin complex causes fusion of membrane sections and dramatic chaotization of the whole membrane structure. The subsequent disintegration of the outer mitochondrial membrane is accompanied by cytochrome c release from the mitochondria and triggering of a cascade of programmed cell death reactions.  相似文献   

18.
K Akashi  H Miyata  H Itoh    K Kinosita  Jr 《Biophysical journal》1996,71(6):3242-3250
Unilamellar liposomes with diameters of 25-100 microns were prepared in various physiological salt solutions, e.g., 100 mM KCl plus 1 mM CaCl2. Successful preparation of the giant liposomes at high ionic strengths required the inclusion of 10-20% of a charged lipid, such as phosphatidylglycerol, phosphatidylserine, phosphatidic acid, or cardiolipin, in phosphatidylcholine or phosphatidylethanolamine. Three criteria were employed to identify unilamellar liposomes, yielding consistent results. Under a phase-contrast microscope those liposomes that showed the thinnest contour and had a vigorously undulating membrane were judged unilamellar. When liposomes were stained with the lipophilic fluorescent dye octadecyl rhodamine B, fluorescence intensities of the membrane of individual liposomes were integer multiples (up to four) of the lowest ones, the least fluorescent liposomes being those also judged unilamellar in the phase-contrast image. Micropipette aspiration test showed that the liposomes judged unilamellar in phase and fluorescence images had an area elastic modulus of approximately 160 dyn/cm, in agreement with literature values. The giant liposomes were stable and retained a concentration gradient of K+ across the membrane, as evidenced in fluorescence images of the K(+)-indicator PBFI encapsulated in the liposomes. Ionophore-induced K+ transport and associated volume change were observed in individual liposomes.  相似文献   

19.
The mitochondrial phospholipid cardiolipin is synthesized from cytidinediphosphate-diacylglycerol and phosphatidylglycerol, a process catalyzed by the enzyme cardiolipin synthase. In this study, we identified a human candidate gene/cDNA for cardiolipin synthase, C20orf155. Expression of this candidate cDNA in the (cardiolipin synthase-deficient) crd1Delta yeast confirmed that it indeed encodes human cardiolipin synthase. Purified mitochondria of the crd1Delta expressing human cardiolipin synthase were used to characterize the enzyme. It has an alkaline pH optimum, requires divalent cations for activity and appears to have a different substrate preference for cytidinediphosphate-diacylglycerol species when compared to phosphatidylglycerol species. The possible implications for CL synthesis and remodeling are discussed.  相似文献   

20.
Preliminary studies have shown that asymmetric transbilayer distributions of phosphatidic acid (PA) can be induced by transmembrane pH gradients (delta pH) in large unilamellar vesicles [Hope et al. (1989) Biochemistry 28, 4181-4187]. Here the mechanism of PA transport is examined employing TNS as a fluorescent probe of lipid asymmetry. It is shown that the kinetics of PA transport are consistent with the transport of the uncharged (protonated) form. Transport of the neutral form can be rapid, exhibiting half-times for transbilayer transport of approximately 25 s at 45 degrees C. It is also shown that PA transport is associated with a large activation energy (28 kcal/mol) similar to that observed for phosphatidylglycerol. The maximum induced transbilayer asymmetry of PA corresponded to approximately 95% on the inner monolayer for vesicles containing 5 mol % PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号