首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a degradative process that recycles long-lived and faulty cellular components. It is linked to many diseases and is required for normal development. ULK1, a mammalian serine/threonine protein kinase, plays a key role in the initial stages of autophagy, though the exact molecular mechanism is unknown. Here we report identification of a novel protein complex containing ULK1 and two additional protein factors, FIP200 and ATG13, all of which are essential for starvation-induced autophagy. Both FIP200 and ATG13 are critical for correct localization of ULK1 to the pre-autophagosome and stability of ULK1 protein. Additionally, we demonstrate by using both cellular experiments and a de novo in vitro reconstituted reaction that FIP200 and ATG13 can enhance ULK1 kinase activity individually but both are required for maximal stimulation. Further, we show that ATG13 and ULK1 are phosphorylated by the mTOR pathway in a nutrient starvation-regulated manner, indicating that the ULK1·ATG13·FIP200 complex acts as a node for integrating incoming autophagy signals into autophagosome biogenesis.Macroautophagy (herein referred to as autophagy) is a catabolic process whereby long-lived proteins and damaged organelles are shuttled to lysosomes for degradation. This process is conserved in all eukaryotes. Under normal growth conditions a housekeeping level of autophagy exists. Under stress, such as nutrient starvation, autophagy is strongly induced resulting in the engulfment of cytosolic components and organelles in specialized double-membrane structures termed autophagosomes. Following fusion of the outer autophagosomal membrane with lysosomes, the inner membrane and its cytoplasmic cargo are degraded and recycled (13). Recent work has implicated autophagy in many disease pathologies, including cancer, neurodegeneration, as well as in eliminating intracellular pathogens (48).The morphology of autophagy was first described in mammalian cells over 50 years ago (9). However, it is only recently through yeast genetic screens, that multiple autophagy-related (ATG) genes have been identified (1012). The yeast ATG proteins have been classified into four major groups: the Atg1 protein kinase complex, the Vps34 phosphatidylinositol 3-phosphate kinase complex, the Atg8/Atg12 conjugation systems, and the Atg9 recycling complex (13). Even though many ATG genes are now known, most of which have functional homologs in mammalian cells (14, 15), the molecular mechanism by which they sense the initial triggers and subsequently dictate autophagy-specific intracellular membrane events is far from understood.In yeast, one of the earliest autophagy-specific events is believed to involve the Atg1 protein kinase complex. Atg1 is a serine/threonine protein kinase and a key autophagy-regulator (16). Atg1 is complexed to at least two other proteins during autophagy, Atg13 and Atg17, both of which are required for normal Atg1 function and autophagosome generation (1719). Classical signaling pathways such as the cAMP-dependent kinase (PKA) pathway or the Tor kinase pathway appear to converge upon this complex, placing Atg1 at an early stage during autophagosome biogenesis (2022). Atg1 phosphorylation by PKA blocks its association with the forming autophagosome (21), while the Tor pathway hyperphosphorylates Atg13 causing a reduced affinity of Atg13 for Atg1, resulting in repression of autophagy (17, 19). In contrast, nutrient starvation or inhibition of Tor leads to dephosphorylation of Atg13 thus increased Atg1 complex formation and kinase activity, resulting in stimulation of autophagy (19). Surprisingly, the physiological substrates of Atg1 kinase have not been identified; thus how Atg1 transduces upstream autophagic signaling is undefined. Recently, mammalian homologs of Atg1 have been identified as ULK1 and ULK2 (Unc-51-like kinase)2 (2325). ULK1 and ULK2 are ubiquitously expressed and localize to the isolation membrane, or forming autophagosome, upon nutrient starvation (25); RNAi-mediated depletion of ULK1 in HEK293 cells compromises autophagy (23, 24). The exact role of ULK1 versus ULK2 in autophagy is unclear, and it is possible some redundancy exists between the two isoforms (26).Given the conservation of autophagy from yeast to man, it is interesting to note that no mammalian counterpart to yeast Atg13 or Atg17 had been identified until very recently. The protein FIP200 (focal adhesion kinase family-interacting protein of 200 kDa) was identified as an autophagy-essential binding partner of both ULK1 and ULK2 (25), and it has been speculated that FIP200 might be the equivalent of yeast Atg17, despite low sequence similarity (25, 27).In this study, we delve deeper into the molecular regulation of ULK1 to gain a better insight into how mammalian signaling pathways affect autophagy initiation. We describe here the identification of a triple complex consisting of ULK1, FIP200, and the mammalian equivalent of Atg13. This complex is required not only for localization of ULK1 to the isolation membrane but also for maximal kinase activity. In addition, both ATG13 and ULK1 are kinase substrates in the mTOR pathway and thus might function to sense nutrient starvation. Therefore, this study defines the role of mammalian ULK1-ATG13-FIP200 complex in mediating the initial autophagic triggers and to transduce the signal to the core autophagic machinery.  相似文献   

2.
Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.  相似文献   

3.
4.
MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy.  相似文献   

5.
Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.  相似文献   

6.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

7.

Background

Autophagy is a bulk degradation pathway for long-lived proteins, protein aggregates, and damaged organelles. ULK1 protein kinase and Vps34 lipid kinase are two key autophagy regulators that are critical for autophagosome biogenesis. However, it isn’t fully understood how ULK1 regulates Vps34, especially in the context of disease. Polyglutamine expansion in huntingtin (Htt) causes aberrant accumulation of the aggregated protein and disrupts various cellular pathways including autophagy, a lysosomal degradation pathway, underlying the pathogenesis of Huntington’s disease (HD). Although autophagic clearance of Htt aggregates is under investigation as therapeutic strategy for HD, the precise mechanism of autophagy impairment remains poorly understood. Moreover, in-vivo assays of autophagy have been particularly challenging due to lack of reliable and robust molecular biomarkers.

Method

We generated anti-phosphorylated ATG14 antibody to determine ATG14-mediated autophagy regulation; we employed Huntington’s disease (HD) genetic cell models and animal models as well as autophagy reporter animal model to understand autophagy signaling and regulation in vivo. We applied biochemical analysis and molecular biology approaches to dissect the alteration of autophagy kinase activity and regulation.

Results

Here, we demonstrate that ULK1 phosphorylates ATG14 at serine 29 in an mTOR-dependent manner. This phosphorylation critically regulates ATG14-Vps34 lipid kinase activity to control autophagy level. We also show that ATG14-associated Vps34 activity and ULK1-mediated phosphorylation of ATG14 and Beclin 1 are compromised in the Q175 mouse model of Huntington’s disease. Finally, we show that ATG14 phosphorylation is decreased during general proteotoxic stress caused by proteasomal inhibition. This reduction of the specific phosphorylation of ATG14 and Beclin 1 is mediated, in part, by p62-induced sequestration of ULK1 to an insoluble cellular fraction. We show that increased ULK1 levels and phosphor-mimetic mutant ATG14 facilitate the clearance of polyQ mutant in cells.

Conclusion

Our study identifies a new regulatory mechanism for ATG14-Vps34 kinase activity by ULK1, which can be used as valuable molecular markers for in-vivo autophagic activity as well as potential therapeutic target for the clearance of polyglutamine disease protein.
  相似文献   

8.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

9.
10.
L-arginine (L-Arg) deficiency results in decreased T-cell proliferation and impaired T-cell function. Here we have found that L-Arg depletion inhibited expression of different membrane antigens, including CD247 (CD3ζ), and led to an ER stress response, as well as cell cycle arrest at G0/G1 in both human Jurkat and peripheral blood mitogen-activated T cells, without undergoing apoptosis. By genetic and biochemical approaches, we found that L-Arg depletion also induced autophagy. Deprivation of L-Arg induced EIF2S1 (eIF2α), MAPK8 (JNK), BCL2 (Bcl-2) phosphorylation, and displacement of BECN1 (Beclin 1) binding to BCL2, leading to autophagosome formation. Silencing of ERN1 (IRE1α) prevented the induction of autophagy as well as MAPK8 activation, BCL2 phosphorylation and XBP1 splicing, whereas led T lymphocytes to apoptosis under L-Arg starvation, suggesting that the ERN1-MAPK8 pathway plays a major role in the activation of autophagy following L-Arg depletion. Autophagy was required for survival of T lymphocytes in the absence of L-Arg, and resulted in a reversible process. Replenishment of L-Arg made T lymphocytes to regain the normal cell cycle profile and proliferate, whereas autophagy was inhibited. Inhibition of autophagy by ERN1, BECN1 and ATG7 silencing, or by pharmacological inhibitors, promoted cell death of T lymphocytes incubated in the absence of L-Arg. Our data indicate for the first time that depletion of L-Arg in T lymphocytes leads to a reversible response that preserves T lymphocytes through ER stress and autophagy, while remaining arrested at G0/G1. Our data also show that the L-Arg depletion-induced ER stress response could lead to apoptosis when autophagy is blocked.  相似文献   

11.
Poliovirus (PV), like many positive-strand RNA viruses, subverts the macroautophagy/autophagy pathway to promote its own replication. Here, we investigate whether the virus uses the canonical autophagic signaling complex, consisting of the ULK1/2 kinases, ATG13, RB1CC1, and ATG101, to activate autophagy. We find that the virus sends autophagic signals independent of the ULK1 complex, and that the members of the autophagic complex are not required for normal levels of viral replication. We also show that the SQSTM1/p62 receptor protein is not degraded in a conventional manner during infection, but is likely cleaved in a manner similar to that shown for coxsackievirus B3. This means that SQSTM1, normally used to monitor autophagic degradation, cannot be used to accurately monitor degradation during poliovirus infection. In fact, autophagic degradation may be affected by the loss of SQSTM1 at the same time as autophagic signals are being sent. Finally, we demonstrate that ULK1 and ULK2 protein levels are greatly reduced during PV infection, and ATG13, RB1CC1, and ATG101 protein levels are reduced as well. Surprisingly, autophagic signaling appears to increase as ULK1 levels decrease. Overexpression of wild-type or dominant-negative ULK1 constructs does not affect virus replication, indicating that ULK1 degradation may be a side effect of the ULK1-independent signaling mechanism used by PV, inducing complex instability. This demonstration of ULK1-independent autophagic signaling is novel and leads to a model by which the virus is signaling to generate autophagosomes downstream of ULK1, while at the same time, cleaving cargo receptors, which may affect cargo loading and autophagic degradative flux. Our data suggest that PV has a finely-tuned relationship with the autophagic machinery, generating autophagosomes without using the primary autophagy signaling pathway.

Abbreviations: ACTB - actin beta; ATG13 - autophagy related 13; ATG14 - autophagy related 14; ATG101 - autophagy related 101; BECN1 - beclin 1; CVB3 - coxsackievirus B3; DMV - double-membraned vesicles; EM - electron microscopy; EMCV - encephalomyocarditis virus; EV-71 - enterovirus 71; FMDV - foot and mouth disease virus; GFP - green fluorescent protein; MAP1LC3B/LC3B - microtubule associated protein 1 light chain 3 beta; MOI - multiplicity of infection; MTOR - mechanistic target of rapamycin kinase; PIK3C3 - phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA2 - protein kinase AMP-activated catalytic subunit alpha 2; PSMG1 - proteasome assembly chaperone 1; PSMG2 - proteasome assembly chaperone 2PV - poliovirus; RB1CC1 - RB1 inducible coiled-coil 1; SQSTM1 - sequestosome 1; ULK1 - unc-51 like autophagy activating kinase 1; ULK2 - unc-51 like autophagy activating kinase 2; WIPI1 - WD repeat domain, phosphoinositide interacting 1  相似文献   


12.
In most bacteria, two tRNAs decode the four arginine CGN codons. One tRNA harboring a wobble inosine (tRNAArgICG) reads the CGU, CGC and CGA codons, whereas a second tRNA harboring a wobble cytidine (tRNAArgCCG) reads the remaining CGG codon. The reduced genomes of Mycoplasmas and other Mollicutes lack the gene encoding tRNAArgCCG. This raises the question of how these organisms decode CGG codons. Examination of 36 Mollicute genomes for genes encoding tRNAArg and the TadA enzyme, responsible for wobble inosine formation, suggested an evolutionary scenario where tadA gene mutations first occurred. This allowed the temporary accumulation of non-deaminated tRNAArgACG, capable of reading all CGN codons. This hypothesis was verified in Mycoplasma capricolum, which contains a small fraction of tRNAArgACG with a non-deaminated wobble adenosine. Subsets of Mollicutes continued to evolve by losing both the mutated tRNAArgCCG and tadA, and then acquired a new tRNAArgUCG. This permitted further tRNAArgACG mutations with tRNAArgGCG or its disappearance, leaving a single tRNAArgUCG to decode the four CGN codons. The key point of our model is that the A-to-I deamination activity had to be controlled before the loss of the tadA gene, allowing the stepwise evolution of Mollicutes toward an alternative decoding strategy.  相似文献   

13.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

14.
15.
16.
The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca2+ regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca2+-regulated proteins that—in mature sperm—are involved in flagellar bending.  相似文献   

17.
18.
19.
Tumor tolerance plays a critical role in tumor growth and escape from immune surveillance. The mechanism of tumor tolerance development is not fully understood. Regulatory T cells (Tregs) play a critical role in tumor tolerance. TIM4 (T cell immunoglobulin- and mucin domain-containing molecule-4) is involved in immune regulation. We investigated the role of TIM4 in the induction of Tregs in tumors. Surgically removed glioma tissue and peripheral blood samples were obtained from 25 glioma patients. Immune cells were isolated from the tissue and blood samples. Confocal microscopy was employed to detect macrophages phagocytosing apoptotic T cells. The generation of tumor-specific Tregs and the immune suppression function of Tregs were observed in cell culture models. High levels of TIM4 were detected in glioma-derived macrophages. Phosphatidylserine (PS) was detected in glioma-derived T cells; naïve T cells expressed low levels of PS that could be up-regulated by hypoxia. Glioma-derived macrophages phagocytosed PS-expressing T cells, gaining the tolerogenic properties, which could induce tumor-specific Tregs; the latter could suppress tumor-specific CD8+ T cells. We conclude that macrophage-derived TIM4 plays an important role in the induction of Tregs in gliomas, which may play an important role in tumor tolerance.  相似文献   

20.
The small ubiquitin related modifier (SUMO)-mediated posttranslational protein modification is widely conserved among eukaryotes. Similar to ubiquitination, SUMO modifications are attached to the substrate protein through three reaction steps by the E1, E2 and E3 enzymes. To date, multiple families of SUMO E3 ligases have been reported in yeast and animals, but only two types of E3 ligases have been identified in Arabidopsis: SAP and Miz 1 (SIZ1) and Methyl Methanesulfonate-Sensitivity protein 21 (MMS21)/HIGH PLOIDY 2 (HPY2), hereafter referred to as HPY2. Both proteins possess characteristic motifs termed Siz/PIAS RING (SP-RING) domains, and these motifs are conserved throughout the plant kingdom. Previous studies have shown that loss-of-function mutations in HPY2 or SIZ1 cause dwarf phenotypes and that the phenotype of siz1-2 is caused by the accumulation of salicylic acid (SA). However, we demonstrate here that the phenotype of hpy2-1 does not depend on SA accumulation. Consistently, the expression of SIZ1 driven by the HPY2 promoter does not complement the hpy2-1 phenotypes, indicating that they are not functional homologs. Lastly, we show that the siz1-2 and hpy2-1 double mutant results in embryonic lethality, supporting the hypothesis that they have non-overlapping roles during embryogenesis. Together, these results suggest that SIZ1 and HPY2 function independently and that their combined SUMOylation is essential for plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号