首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.  相似文献   

2.
Cationic membrane-proximal amino acids determine the topology of membrane proteins by interacting with anionic lipids that are restricted to the intracellular membrane leaflet. This mechanism implies that anionic lipids interfere with electrostatic interactions of membrane proteins. The integrin αIIbβ3 transmembrane (TM) complex is stabilized by a membrane-proximal αIIb(Arg995)-β3(Asp723) interaction; here, we examine the influence of anionic lipids on this complex. Anionic lipids compete for αIIb(Arg995) contacts with β3(Asp723) but paradoxically do not diminish the contribution of αIIb(Arg995)-β3(Asp723) to TM complex stability. Overall, anionic lipids in annular positions stabilize the αIIbβ3 TM complex by up to 0.50 ± 0.02 kcal/mol relative to zwitterionic lipids in a headgroup structure-dependent manner. Comparatively, integrin receptor activation requires TM complex destabilization of 1.5 ± 0.2 kcal/mol, revealing a sizeable influence of lipid composition on TM complex stability. We implicate changes in lipid headgroup accessibility to small molecules (physical membrane characteristics) and specific but dynamic protein-lipid contacts in this TM helix-helix stabilization. Thus, anionic lipids in ubiquitous annular positions can benefit the stability of membrane proteins while leaving membrane-proximal electrostatic interactions intact.  相似文献   

3.
The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen.  相似文献   

4.
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (kon1 = 1.4 × 10−4 and kon2 = 2.3 × 10−4 μm2/s), off-rates (koff1 = 2.42 and koff2 = 0.60 s−1), and dissociation constants (Kd1 = 1.7 × 104 and Kd2 = 2.6 × 103 μm−2). The integrin activator Mn2+ changed the on-rates and affinities (Kd1 = 5 × 104 and Kd2 = 0.3 × 103 μm−2) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn2+-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.  相似文献   

5.
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3) and mutant CHO cells expressing inactive αIIbα6Bβ3 due to ILK deficiency. In this study, we further investigated the underlying mechanisms for ILK-dependent integrin activation. ILK-deficient mutant cells had trace levels of PINCH and α-parvin, and transfection of ILK cDNA into the mutant cells increased not only ILK but also PINCH and α-parvin, resulting in the restoration of αIIbα6Bβ3 activation. In the parental cells expressing active αIIbα6Bβ3, ILK, PINCH, and α-parvin were co-immunoprecipitated, indicating the formation of the IPP complex. Moreover, short interfering RNA (siRNA) experiments targeting PINCH-1 or both α- and β-parvin mRNA in the parent cells impaired the αIIbα6Bβ3 activation as well as the expression of the other components of the IPP complex. In addition, ILK mutants possessing defects in either PINCH or parvin binding failed to restore αIIbα6Bβ3 activation in the mutant cells. Kindlin-2 siRNA in the parental cells impaired αIIbα6Bβ3 activation without disturbing the expression of ILK. For CHO cells stably expressing wild-type αIIbβ3 that is an inactive form, overexpression of a talin head domain (THD) induced αIIbβ3 activation and the THD-induced αIIbβ3 activation was impaired by ILK siRNA through a significant reduction in the expression of the IPP complex. In contrast, overexpression of all IPP components in the αIIbβ3-expressing CHO cells further augmented THD-induced αIIbβ3 activation, whereas they did not induce αIIbβ3 activation without THD. These data suggest that the IPP complex rather than ILK plays an important role and supports integrin activation probably through stabilization of the active conformation.  相似文献   

6.
7.
Structural data of integrin αIIbβ3 have been interpreted as supporting a model in which: 1) the receptor exists primarily in a “bent,” low affinity conformation on unactivated platelets and 2) activation induces an extended, high affinity conformation prior to, or following, ligand binding. Previous studies found that “clasping” the αIIb head domain to the β3 tail decreased fibrinogen binding. To study the role of αIIb extension about the genu, we introduced a disulfide “clamp” between the αIIb thigh and calf-1 domains. Clamped αIIbβ3 had markedly reduced ability to bind the large soluble ligands fibrinogen and PAC-1 when activated with monoclonal antibody (mAb) PT25-2 but not when activated by Mn2+ or by coexpressing the clamped αIIb with a β3 subunit containing the activating mutation N339S. The clamp had little effect on the binding of the snake venom kistrin (Mr 7,500) or αIIbβ3-mediated adhesion to immobilized fibrinogen, but it did diminish the enhanced binding of mAb AP5 in the presence of kistrin. Collectively, our studies support a role for αIIb extension about the genu in the binding of ligands of 340,000 and 900,000 Mr with mAb-induced activation but indicate that it is not an absolute requirement. Our data are consistent with αIIb extension resulting in increased access to the ligand-binding site and/or facilitating the conformational change(s) in β3 that affect the intrinsic affinity of the binding pocket for ligand.  相似文献   

8.
The integrin family of heterodimeric cell adhesion molecules exists in both low- and high-affinity states, and integrin activation requires binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to membrane-proximal sequences in the β-integrin cytoplasmic domain. However, it has recently become apparent that the kindlin family of FERM domain proteins is also essential for talin-induced integrin activation. FERM domains are typically composed of F1, F2, and F3 domains, but the talin FERM domain is atypical in that it contains a large insert in F1 and is preceded by a previously unrecognized domain, F0. Initial sequence alignments showed that the kindlin FERM domain was most similar to the talin FERM domain, but the homology appeared to be restricted to the F2 and F3 domains. Based on a detailed characterization of the talin FERM domain, we have reinvestigated the sequence relationship with kindlins and now show that kindlins do indeed contain the same domain structure as the talin FERM domain. However, the kindlin F1 domain contains an even larger insert than that in talin F1 that disrupts the sequence alignment. The insert, which varies in length between different kindlins, is not conserved and, as in talin, is largely unstructured. We have determined the structure of the kindlin-1 F0 domain by NMR, which shows that it adopts the same ubiquitin-like fold as the talin F0 and F1 domains. Comparison of the kindlin-1 and talin F0 domains identifies the probable interface with the kindlin-1 F1 domain. Potential sites of interaction of kindlin F0 with other proteins are discussed, including sites that differ between kindlin-1, kindlin-2, and kindlin-3. We also demonstrate that F0 is required for the ability of kindlin-1 to support talin-induced αIIbβ3 integrin activation and for the localization of kindlin-1 to focal adhesions.  相似文献   

9.
Integrins are bidirectional, allosteric transmembrane receptors that play a central role in hemostasis and arterial thrombosis. Using cryo-electron microscopy, multireference single-particle reconstruction methods, and statistics-based computational fitting approaches, we determined three-dimensional structures of human integrin αIIbβ3 embedded in a lipid bilayer (nanodiscs) while bound to domains of the cytosolic regulator talin and to extracellular ligands. We also determined the conformations of integrin in solution by itself to localize the membrane and the talin-binding site. To our knowledge, our data provide unprecedented three-dimensional information about the conformational states of intact, full-length integrin within membrane bilayers under near-physiological conditions and in the presence of cytosolic activators and extracellular ligands. We show that αIIbβ3 integrins exist in a conformational equilibrium clustered around four main states. These conformations range from a compact bent nodule to two partially extended intermediate conformers and finally to a fully upright state. In the presence of nanodiscs and the two ligands, the equilibrium is significantly shifted toward the upright conformation. In this conformation, the receptor extends ∼20 nm upward from the membrane. There are no observable contacts between the two subunits other than those in the headpiece near the ligand-binding pocket, and the α- and β-subunits are well separated with their cytoplasmic tails ∼8 nm apart. Our results indicate that extension of the ectodomain is possible without separating the legs or extending the hybrid domain, and that the ligand-binding pocket is not occluded by the membrane in any conformations of the equilibrium. Further, they suggest that integrin activation may be influenced by equilibrium shifts.  相似文献   

10.
《Biophysical journal》2023,122(3):533-543
The platelet integrin αIIbβ3 undergoes long-range conformational transitions associated with its functional conversion from inactive (low-affinity) to active (high-affinity) during hemostasis. Although new conformations that are intermediate between the well-characterized bent and extended states have been identified, their molecular dynamic properties and functions in the assembly of adhesions remain largely unexplored. In this study, we evaluated the properties of intermediate conformations of integrin αIIbβ3 and characterized their effects on the assembly of adhesions by combining all-atom simulations, principal component analysis, and mesoscale modeling. Our results show that in the low-affinity, bent conformation, the integrin ectodomain tends to pivot around the legs; in intermediate conformations, the headpiece becomes partially extended, away from the lower legs. In the fully open, active state, αIIbβ3 is flexible, and the motions between headpiece and lower legs are accompanied by fluctuations of the transmembrane helices. At the mesoscale, bent integrins form only unstable adhesions, but intermediate or open conformations stabilize the adhesions. These studies reveal a mechanism by which small variations in ligand binding affinity and enhancement of the ligand-bound lifetime in the presence of actin retrograde flow stabilize αIIbβ3 integrin adhesions.  相似文献   

11.
Under physiological conditions, circulating platelets are discoid in shape.1 On these platelets, the fibrinogen receptor (integrin αIIbβ3) is in a low-affinity state, unable to bind soluble fibrinogen (Fg). Activation by agonists such as ADP and thrombin leads to a change in the conformation of the integrin αIIbβ3 through a process known as inside-out signaling. This enables the integrin to bind soluble Fg, which initiates a cascade of events referred to as outside-in signaling.2 Outside-in signaling control processes, such as platelet spreading and clot retraction, by regulating small G-proteins such as RhoA, Rac and cdc42.Key words: platelets, integrin αIIbβ3, Galpha13, RhoA, clot retraction, thrombin, fibrinogenThe majority of the physiological platelet agonists (except collagen) induce inside-out signaling by binding to specific G-protein-coupled receptors (GPCRs). A G-protein plays a crucial role in translating the signal from GPCR to downstream effector molecules, ultimately leading to affinity modulation of integrin αIIbβ3. Platelets express nine Gα subunits; namely Gq, Gi1, Gi2, Gi3, Gz, G12, G13, Gs and G16. Previous studies have shown that a small G-protein, RhoA, is activated by the G12/13 family and plays a crucial role in calcium-independent platelet shape change.3 However, RhoA is also activated by αIIbβ3 and inhibits platelet spreading to trigger clot retraction.4 Recently, in a series of elegant experiments, Gong et al. have described the dynamic regulation of RhoA through a signaling crosstalk between Gα13 and αIIbβ3.5By generating mice in which the platelets were depleted of Gα13 using siRNA technology, Gong et al. investigated the role of Gα13-mediated signaling on platelet spreading on immobilized Fg.5 The confocal images very clearly showed that, in the absence of Gα13, platelets spread poorly on Fg, which was rescued by pretreatment with the Rho-kinase inhibitor Y27632, confirming previous findings that RhoA activated downstream of integrin αIIbβ3 inhibits platelet spreading. Interestingly, Gα13-depleted platelets failed to activate c-Src but accelerated RhoA activation. From these observations, the authors infer that Gα13 is important for integrin-mediated c-Src activation and RhoA inhibition, leading to increased cell spreading.5Since Gα13 regulates integrin-mediated cell spreading and c-Src activation, Gong et al. examined the interaction of Gα13 with αIIbβ3 using co-immunoprecipitation and GST pull-down assays.5 They found that the GTP-bound form of Gα13 shows enhanced interaction with the integrin β3 subunit. This interaction is required for the activation of c-Src and the inhibition of RhoA. However, they found that the inhibition of RhoA is transient. RhoA activation is suppressed for the first 15 min of platelet spreading, after which RhoA is activated. This initial suppression is rescued by blocking Gα13 and β3 cytoplasmic domain (β3-CD) interaction. Furthermore, they observed that RhoA activation parallels clot retraction.5 These findings indicate that Gα13 is a key regulator of platelet spreading and clot retraction phenomena.According to Gong et al., thrombin-induced inside-out signaling through GPCR leads to GTP loading of Gα13 (Fig. 1A). This GTP-bound Gα13 interacts with integrin β3-CD of ligand-bound integrin, thus facilitating c-Src activation, which leads to platelet spreading. Blockade of the interaction between Gα13 and β3-CD or cleavage of β3-CD by calpain results in clot retraction (Fig. 1B).Open in a separate windowFigure 1Schematic representation of the dynamic regulation of RhoA by Gα13 during platelet activation. (A) Activation of platelets by thrombin receptors coupled to Gα13 leads to the activation of RhoA, leading to platelet shape change. (B) The change in the conformation of integrin to a high-affinity form results in fibrinogen binding to αIIbβ3. Active Gα13 binds to the cytoplasmic domain of β3 leading to the activation of c-Src, resulting in platelet spreading. The rise in intracellular calcium activates calpain, which cleaves the β3 cytoplasmic domain, releasing c-Src, which, resulting in the activation of RhoA, leads to cell retraction. *Denotes GTP-bound active form of G-proteins.Perhaps the most significant and novel finding of the study is the identification of integrin αIIbβ3 as an effector of Gα13. The study also convincingly shows that Gα13 bound to integrin regulates RhoA via c-Src. Furthermore, achieving 80% knockdown of Gα13 in an in vivo setting using siRNA represents a technological advancement. Since Gα13 binds to integrin β3-CD in a 1:1 stoichiometry, it appears that only a small population of integrin is regulated by Gα13, as there are far less Gα13 molecules in a single platelet than the number of αIIbβ3 molecules. This will require further investigation. Gong et al. also finds that an appreciable amount of Gα13 is associated with β3 in resting platelets, which requires some explanation.5 It is also not clear if Gα13 remains bound to β3-CD or dissociates from the integrin during clot retraction.Overall, this is a paradigm-shifting study that establishes the importance of the dynamic regulation of RhoA by Gα13 in order to achieve efficient platelet spreading and clot retraction.  相似文献   

12.
Fibrinogen binding to the integrin αIIbβ3 mediates platelet aggregation and spreading on fibrinogen-coated surfaces. However, in vivo αIIbβ3 activation and fibrinogen conversion to fibrin occur simultaneously, although the relative contributions of fibrinogen versus fibrin to αIIbβ3-mediated platelet functions are unknown. Here, we compared the interaction of αIIbβ3 with fibrin and fibrinogen to explore their differential effects. A microscopic bead coated with fibrinogen or monomeric fibrin produced by treating the immobilized fibrinogen with thrombin was captured by a laser beam and repeatedly brought into contact with surface-attached purified αIIbβ3. When αIIbβ3-ligand complexes were detected, the rupture forces were measured and displayed as force histograms. Monomeric fibrin displayed a higher probability of interacting with αIIbβ3 and a greater binding strength. αIIbβ3-fibrin interactions were also less sensitive to inhibition by abciximab and eptifibatide. Both fibrinogen- and fibrin-αIIbβ3 interactions were partially inhibited by RGD peptides, suggesting the existence of common RGD-containing binding motifs. This assumption was supported using the fibrin variants αD97E or αD574E with mutated RGD motifs. Fibrin made from a fibrinogen γ′/γ′ variant lacking the γC αIIbβ3-binding motif was more reactive with αIIbβ3 than the parent fibrinogen. These results demonstrate that fibrin is more reactive with αIIbβ3 than fibrinogen. Fibrin is also less sensitive to αIIbβ3 inhibitors, suggesting that fibrin and fibrinogen have distinct binding requirements. In particular, the maintenance of αIIbβ3 binding activity in the absence of the γC-dodecapeptide and the α-chain RGD sequences suggests that the αIIbβ3-binding sites in fibrin are not confined to its known γ-chain and RGD motifs.  相似文献   

13.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   

14.
The platelet integrin αIIbβ3 binds to a KQAGDV motif at the fibrinogen γ-chain C terminus and to RGD motifs present in loops in many extracellular matrix proteins. These ligands bind in a groove between the integrin α and β-subunits; the basic Lys or Arg side chain hydrogen bonds to the αIIb-subunit, and the acidic Asp side chain coordinates to a metal ion held by the β3-subunit. Ligand binding induces headpiece opening, with conformational change in the β-subunit. During this opening, RGD slides in the ligand-binding pocket toward αIIb, with movement of the βI-domain β1-α1 loop toward αIIb, enabling formation of direct, charged hydrogen bonds between the Arg side chain and αIIb. Here we test whether ligand interactions with β3 suffice for stable ligand binding and headpiece opening. We find that the AGDV tetrapeptide from KQAGDV binds to the αIIbβ3 headpiece with affinity comparable with the RGDSP peptide from fibronectin. AGDV induced complete headpiece opening in solution as shown by increase in hydrodynamic radius. Soaking of AGDV into closed αIIbβ3 headpiece crystals induced intermediate states similarly to RGDSP. AGDV has very little contact with the α-subunit. Furthermore, as measured by epitope exposure, AGDV, like the fibrinogen γ C-terminal peptide and RGD, caused integrin extension on the cell surface. Thus, pushing by the β3-subunit on Asp is sufficient for headpiece opening and ligand sliding, and no pulling by the αIIb subunit on Arg is required.  相似文献   

15.
Even though GPCR signaling in human platelets is directly involved in hemostasis and thrombus formation, the sequence of events by which G protein activation leads to αIIbβ3 integrin activation (inside-out signaling) is not clearly defined. We previously demonstrated that a conformationally sensitive domain of one G protein, i.e.13 switch region 1 (Gα13SR1), can directly participate in the platelet inside-out signaling process. Interestingly however, the dependence on Gα13SR1 signaling was limited to PAR1 receptors, and did not involve signaling through other important platelet GPCRs. Based on the limited scope of this involvement, and the known importance of G13 in hemostasis and thrombosis, the present study examined whether signaling through another switch region of G13, i.e.13 switch region 2 (Gα13SR2) may represent a more global mechanism of platelet activation. Using multiple experimental approaches, our results demonstrate that Gα13SR2 forms a bi-molecular complex with the head domain of talin and thereby promotes β3 integrin activation. Moreover, additional studies provided evidence that Gα13SR2 is not constitutively associated with talin in unactivated platelets, but becomes bound to talin in response to elevated intraplatelet calcium levels. Collectively, these findings provide evidence for a novel paradigm of inside-out signaling in platelets, whereby β3 integrin activation involves the direct binding of the talin head domain to the switch region 2 sequence of the Gα13 subunit.  相似文献   

16.
Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members encoded by multigene families in rodents and primates. In human pregnancy, PSGs are secreted by the syncytiotrophoblast, a fetal tissue, and reach a concentration of up to 400 ug/ml in the maternal bloodstream at term. Human and mouse PSGs induce release of anti-inflammatory cytokines such as IL-10 and TGFβ1 from monocytes, macrophages, and other cell types, suggesting an immunoregulatory function. RGD tri-peptide motifs in the majority of human PSGs suggest that they may function like snake venom disintegrins, which bind integrins and inhibit interactions with ligands. We noted that human PSG1 has a KGD, rather than an RGD motif. The presence of a KGD in barbourin, a platelet integrin αIIbβ3 antagonist found in snake venom, suggested that PSG1 may be a selective αIIbβ3 ligand. Here we show that human PSG1 binds αIIbβ3 and inhibits the platelet – fibrinogen interaction. Unexpectedly, however, the KGD is not critical as multiple PSG1 domains independently bind and inhibit αIIbβ3 function. Human PSG9 and mouse Psg23 are also inhibitory suggesting conservation of this function across primate and rodent PSG families. Our results suggest that in species with haemochorial placentation, in which maternal blood is in direct contact with fetal trophoblast, the high expression level of PSGs reflects a requirement to antagonise abundant (3 mg/ml) fibrinogen in the maternal circulation, which may be necessary to prevent platelet aggregation and thrombosis in the prothrombotic maternal environment of pregnancy.  相似文献   

17.
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382–393 and α1(IV)531–543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl393 in α1(IV)382–393 and Hyl540 and Hyl543 in α1(IV)531–543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382–393 but right in the middle of α3β1 integrin interaction with α1(IV)531–543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.  相似文献   

18.
Integrins are a family of heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membranes. The transmembrane domain (TM) of integrin plays a critical role in mediating transition of the receptor from the default inactive to the active state on the cell surfaces. In this study, we successfully applied the substituted cysteine scanning accessibility method to determine the intracellular border of the integrin α(IIb)β(3) TM in the inactive and active states in living cells. We examined the aqueous accessibility of 75 substituted cysteines comprising the C terminus of both α(IIb) and β(3) TMs, the intracellular membrane-proximal regions, and the whole cytoplasmic tails, to the labeling of a membrane-permeable, cysteine-specific chemical biotin maleimide (BM). The active state of integrin α(IIb)β(3) heterodimer was generated by co-expression of activating partners with the cysteine-substituted constructs. Our data revealed that, in the inactive state, the intracellular lipid/aqueous border of α(IIb) TM was at Lys(994) and β(3) TM was at Phe(727) respectively; in the active state, the border of α(IIb) TM shifted to Pro(998), whereas the border of β(3) TM remained unchanged, suggesting that complex conformational changes occurred in the TMs upon α(IIb)β(3) inside-out activation. On the basis of the results, we propose a new inside-out activation mechanism for integrin α(IIb)β(3) and by inference, all of the integrins in their native cellular environment.  相似文献   

19.
Integrin α9β1     
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin α9β1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce α9β1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in α9β1 signal transduction. Here we provide an over view of known integrin α9β1 signaling pathways and highlight its roles in diverse biological conditions.  相似文献   

20.
The Dok proteins are a family of adaptor molecules that have a well defined role in regulating cellular migration, immune responses, and tumor progression. Previous studies have demonstrated that Doks-1 to 3 are expressed in platelets and that Dok-2 is tyrosine-phosphorylated downstream of integrin αIIbβ3, raising the possibility that it participates in integrin αIIbβ3 outside-in signaling. We demonstrate that Dok-2 in platelets is primarily phosphorylated by Lyn kinase. Moreover, deficiency of Dok-2 leads to dysregulated integrin αIIbβ3-dependent cytosolic calcium flux and phosphatidylinositol(3,4)P2 accumulation. Although agonist-induced integrin αIIbβ3 affinity regulation was unaltered in Dok-2−/− platelets, Dok-2 deficiency was associated with a shear-dependent increase in integrin αIIbβ3 adhesive function, resulting in enhanced platelet-fibrinogen and platelet-platelet adhesive interactions under flow. This increase in adhesion was restricted to discoid platelets and involved the shear-dependent regulation of membrane tethers. Dok-2 deficiency was associated with an increased rate of platelet aggregate formation on thrombogenic surfaces, leading to accelerated thrombus growth in vivo. Overall, this study defines an important role for Dok-2 in regulating biomechanical adhesive function of discoid platelets. Moreover, they define a previously unrecognized prothrombotic mechanism that is not detected by conventional platelet function assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号