首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To study the expression pattern and prognostic significance of SAMSN1 in glioma.

Methods

Affymetrix and Arrystar gene microarray data in the setting of glioma was analyzed to preliminarily study the expression pattern of SAMSN1 in glioma tissues, and Hieratical clustering of gene microarray data was performed to filter out genes that have prognostic value in malignant glioma. Survival analysis by Kaplan-Meier estimates stratified by SAMSN1 expression was then made based on the data of more than 500 GBM cases provided by The Cancer Genome Atlas (TCGA) project. At last, we detected the expression of SAMSN1 in large numbers of glioma and normal brain tissue samples using Tissue Microarray (TMA). Survival analysis by Kaplan-Meier estimates in each grade of glioma was stratified by SAMSN1 expression. Multivariate survival analysis was made by Cox proportional hazards regression models in corresponding groups of glioma.

Results

With the expression data of SAMSN1 and 68 other genes, high-grade glioma could be classified into two groups with clearly different prognoses. Gene and large sample tissue microarrays showed high expression of SAMSN1 in glioma particularly in GBM. Survival analysis based on the TCGA GBM data matrix and TMA multi-grade glioma dataset found that SAMSN1 expression was closely related to the prognosis of GBM, either PFS or OS (P<0.05). Multivariate survival analysis with Cox proportional hazards regression models confirmed that high expression of SAMSN1 was a strong risk factor for PFS and OS of GBM patients.

Conclusion

SAMSN1 is over-expressed in glioma as compared with that found in normal brains, especially in GBM. High expression of SAMSN1 is a significant risk factor for the progression free and overall survival of GBM.  相似文献   

2.
Under physiological conditions, transferrin receptor 2 (TfR2) is expressed in the liver and its balance is related to the cell cycle rather than to intracellular iron levels. We recently showed that TfR2 is highly expressed in glioblastoma cell lines. Here, we demonstrate that, in these cells, TfR2 appears to localize in lipid rafts, induces extracellular signal-regulated kinase 1/2 phosphorylation after transferrin binding, and contributes to cell proliferation, as shown by RNA silencing experiments. In vitro hypoxic conditions induce a significant TfR2 up-regulation, suggesting a role in tumor angiogenesis. As assessed by immunohistochemistry, the level of TfR2 expression in astrocytic tumors is related to histologic grade, with the highest expression observed in glioblastomas. The level of TfR2 expression represents a favorable prognostic factor, which is associated with the higher sensitivity to temozolomide of TfR2-positive tumor cells in vitro. The endothelial cells of glioblastoma vasculature also stain for TfR2, whereas those of the normal brain vessels do not. Importantly, TfR2 is expressed by the subpopulation of glioblastoma cells with properties of cancer-initiating cells. TfR2-positive glioblastoma cells retain their TfR2 expression on xenografting in immunodeficient mice. In conclusion, our observations demonstrate that TfR2 is a neoantigen for astrocytomas that seems attractive for developing target therapies.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) comprises a subset of head and neck squamous cell carcinoma (HNSCC) with poor therapeutic outcomes and high glycolytic dependency. Neoadjuvant chemotherapy regimens of docetaxel, cisplatin and 5-fluorouracil (TPF) are currently accepted as standard regimens for HNSCC patients with a high risk of distant metastatic spread. However, the antitumor outcomes of TPF neoadjuvant chemotherapy in HNSCC remain controversial. This study investigated the role of lactate dehydrogenase B (LDHB), a key glycolytic enzyme catalyzing the inter-conversion between pyruvate and lactate, in determining chemotherapy response and prognosis in OSCC patients. We discovered that a high protein level of LDHB in OSCC patients was associated with a poor response to TPF regimen chemotherapy as well as poor overall survival and disease-free survival. Our in-depth study revealed that high LDHB expression conferred resistance to taxol but not 5-fluorouracil or cisplatin. LDHB deletion sensitized OSCC cell lines to taxol, whereas the introduction of LDHB decreased sensitivity to taxol treatment. Taxol induced a pronounced impact on LDHB-down-regulated OSCC cells in terms of apoptosis, G2/M phase cell cycle arrest and energy metabolism. In conclusion, our study highlighted the critical role of LDHB in OSCC and proposed that LDHB could be used as a biomarker for the stratification of patients for TPF neoadjuvant chemotherapy and the determination of prognosis in OSCC patients.  相似文献   

4.

Introduction

Previous studies have shown that cysteine-rich secretory protein containing LCCL domain 2 (CRISPLD2) is a novel lipopolysaccharide (LPS)-binding protein, and the upregulation of CRISPLD2 expression protects mice against LPS-induced lethality. The aim of this study was to examine the expression of CRISPLD2 in patients with sepsis and characterize the association of this protein with procalcitonin.

Methods

The expression of CRISPLD2 was determined in100 healthy volunteers and 119 septic patients. According to the definition of sepsis, patients were divided into three groups sepsis, severe sepsis, and septic shock. The relationship between CRISPLD2 levels and procalcitonin was also examined and statistically analyzed.

Results

The CRISPLD2 levels in healthy individuals were 219.3±69.1 µg/ml. Patients with sepsis exhibited higher CRISPLD2 levels than observed in healthy individuals (p = 0.001), but CRISPLD2 expression was not upregulated in patients with septic shock. No significant differences were observed between the levels of CRISPLD2 in surviving and non-surviving spesis patients. CRISPLD2 levels were negatively correlated with procalcitonin levels(r = −0.334, p<0.001).

Conclusions

The present study is the first to demonstrate the decreased expression of CRISPLD2 in septic shock and its association with PCT in sepsis. Further studies are needed to clarify the potential association between CRISPLD2 expression and clinical outcomes to determine if it could be used as a novel sepsis biomarker.  相似文献   

5.
Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7 (CXC chemokine receptor 7), has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine receptor 3). In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once occupied by normal hematopoietic stem cells.  相似文献   

6.
7.
原发性肝细胞癌是我国高发的恶性肿瘤之一,开展肝癌相关基因的研究具有重要的意义。从已经获得的在肝癌和正常肝对照中表达量有明显差异的EST片段入手,克隆了一个功能未报道的而可能与肝癌相关的基因。暂命名为fup1,该基因编码区全长1233bp,其产物的分子量约为46kD,等电点为5.48,可能是一个核蛋白。Northern 迹结果表明该基因在人类除心脏以外的多种正常组织中表达量很小,说明其分布具有一定的组织特异性,将整合有该基因的真核表达载体转染NIH3T3细胞后,MTT检测结果证明该基因的产物可能对细胞的增殖具有促进作用。  相似文献   

8.
9.
10.

Background

The flotillin family member flotillin-1 (FLOT1) encodes a caveolae-associated, integral membrane protein that belongs to lipid raft family and involves in vesicular trafficking and signal transduction. However, the role of FLOT1 in development and progression of cancer remains largely unknown. The present study was aimed to investigate the clinical and prognostic significance of FLOT1 in hepatocellular carcinoma (HCC).

Methods

Real-time PCR and western blot analyses were applied to examine FLOT1 expression in fourteen HCC cell lines and one normal hepatic cell line, ten pairs of primary HCC and matched adjacent noncancerous liver tissues from the same patient. Immunohistochemistry (IHC) was performed to examine FLOT1 protein expression in paraffin-embedded tissues from 196 HCC patients. Statistical analyses were applied to evaluate the diagnostic value and associations of FLOT1 expression with clinical parameters.

Results

FLOT1 expression was evidently up-regulated in HCC tissues compared with that in the matched adjacent noncancerous liver tissues. In the 196 cases of tested HCC samples, FLOT1 protein level was positively correlated with Tumor size (P = 0.025), clinical stage (P<0.002), CLIP stage (P<0.001), vascular invasion (P<0.001), relapse (P<0.001), and serum AFP levels (P = 0.025). Patients with higher FLOT1 expression had shorter overall survival time, whereas those with lower FLOT1 expression had longer survival time.

Conclusions

Our study demonstrated FLOT1 is associated with aggressive characteristics of HCC, and suggested the possibility of its use as a prognostic marker in patients with HCC.  相似文献   

11.
Recent studies have demonstrated an important physiologic link between bone and fat. Bone and fat cells arise from the same mesenchymal precursor cell within bone marrow, capable of differentiation into adipocytes or osteoblasts. Increased BMI appears to protect against osteoporosis. However, recent studies have suggested detrimental effects of visceral fat on bone health. Increased visceral fat may also be associated with decreased growth hormone (GH) and insulin‐like growth factor 1 (IGF‐1) levels which are important for maintenance of bone homeostasis. The purpose of our study was to assess the relationship between vertebral bone marrow fat and trabecular bone mineral density (BMD), abdominal fat depots, GH and IGF‐1 in premenopausal women with obesity. We studied 47 premenopausal women of various BMI (range: 18–41 kg/m2, mean 30 ± 7 kg/m2) who underwent vertebral bone marrow fat measurement with proton magnetic resonance spectroscopy (1H‐MRS), body composition, and trabecular BMD measurement with computed tomography (CT), and GH and IGF‐1 levels. Women with high visceral fat had higher bone marrow fat than women with low visceral fat. There was a positive correlation between bone marrow fat and visceral fat, independent of BMD. There was an inverse association between vertebral bone marrow fat and trabecular BMD. Vertebral bone marrow fat was also inversely associated with IGF‐1, independent of visceral fat. Our study showed that vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF‐1 and BMD. This suggests that the detrimental effect of visceral fat on bone health may be mediated in part by IGF‐1 as an important regulator of the fat and bone lineage.  相似文献   

12.
13.

Objective

EFEMP1, the epidermal growth factor–containing fibulin-like extracellular matrix protein 1, functions as an oncogene or a tumor suppressor depending on the cancer types. In this study, we aim to determine whether EFEMP1 affects the tumorigenesis and progression of endometrial carcinoma.

Methods

The expression of EFEMP1 was investigated using immunohistochemistry in a panel of normal endometrium (n = 40), atypical hyperplasia (n = 10) and endometrial carcinoma tissues (n = 84). Methylation status of the EFEMP1 promoter was detected by methylation-specific PCR (MSP) and bisulphite genomic sequencing. Up- or down-regulation of EFEMP1 were achieved by stable or transient transfection with pCMV6/GFP/Neo-EFEMP1 or pGPU6/GFP/Neo-shEFEMP1 respectively. Effects of EFEMP1 on tumor proliferation, invasion and migration were evaluated by MTT, plate colony formation, Transwell and wound healing assay. The nude mouse tumor xenograft assay was used to investigate function of EFEMP1 in vivo.

Results

Compared with normal endometrium (32/40) and atypical hyperplasia (7/10), EFEMP1 expression was much lower in endometrial carcinoma tissues (16/84) (P<0.001 and P = 0.02). EFEMP1 promoter was hypermethylated in endometrial carcinoma tissues (67%) as compared to normal tissue (10%) and down-regulation of EFEMP1 was associated with promoter hypermethylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) and/or trichostatin A (TSA) altered EFEMP1 methylation status, and restored EFEMP1 expression. Moreover, EFEMP1 decreased secretion of MMPs and inhibited tumor cell proliferation, metastasis and invasion in vitro and suppressed tumorigenesis in nude mice. Besides, EFEMP1 increased expression of E-cadherin and suppressed expression of vimentin in endometrial carcinoma.

Conclusion

EFEMP1 is a new candidate tumor suppressor gene in endometrial carcinoma, and is frequently silenced by promoter hypermethylation. It could inhibit tumor growth and invasion both in vitro and in vivo. Our findings propose that targeting EFEMP1 might offer future clinical utility in endometrial carcinoma.  相似文献   

14.
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of SATB1 in RCC remains unclear. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of SATB1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of SATB1 was significantly associated with depth of invasion (P<0.001), lymph node status (P = 0.001) and TNM stage (P = 0.009). SATB1 knockdown inhibited the proliferation, migration and invasion of 786-O cells, whereas SATB1 overexpression promoted the growth and aggressive phenotype of ACHN cells in vitro. Furthermore, SATB1 expression was positively correlated with ZEB2 expression (P = 0.013), and inversely linked to levels of SATB2 and E-cadherin (P = 0.005 and P<0.001, respectively) in ccRCC tissues. Our data provide a basis for the concept that overexpression of SATB1 may play a critical role in the acquisition of an aggressive phenotype for RCC cells through EMT, providing new insights into the significance of SATB1 in invasion and metastasis of ccRCC, which may contribute to fully elucidating the exact mechanism of development and progression of RCC.  相似文献   

15.

Aim

The role of Sirtuin 1 (SIRT 1) in carcinogenesis is controversial. This study was to explore the association between the SIRT1 expression and the clinical characteristics, the responsiveness to chemotherapy and prognosis in Non-small cell lung cancer (NSCLC).

Methods

We enrolled 295 patients with inoperable advanced stage of NSCLC, namely, stage III (A+B) and IV NSCLC. All patients had received platinum-based chemotherapy after diagnosis and the chemotherapy response were evaluated. All patients were followed up for overall survival (OS) and progression free survival (PFS). In vitro, H292 cells were tranfected with SIRT1 small interfering RNA (siRNA). The cell biological behaviors and chemosensitivity to cisplatin treatment were studied. The in vivo tumorgenesis and metastasis assays were performed in nude mice.

Results

We found that the SIRT1 expressions were significantly associated with the tumor stage, tumor size and differentiation status. Patients with high SIRT 1 expressions had a significantly higher chance to be resistant to chemotherapy than those with low SIRT 1 expression. Patients with high expression of SIRT1 had significantly shorter OS and DFS than those with low expression. Cox analyses confirmed that the SIRT 1 expression was a strong predictor for a poor OS and PFS in NSCLC patients underwent Platinum-based chemotherapy. In vitro studies revealed that the reduced expression SIRT 1 by siRNA technique significantly inhibited cell proliferation, migration and invasion. More importantly, SIRT1 si-RNA significantly enhanced the chemosensitivity of H292 cells to cisplatin treatment. The in vivo tumorgenesis and metastasis assays showed that SIRT1 knockdown dramatically reduced the tumor volume and the metastatic ability in nude mice.

Conclusion

Collectively, our data suggest that the SIRT1 expression may be a molecular marker associated with the NSLCLC clinical features, treatment responsiveness and prognosis of advanced NSCLC.  相似文献   

16.
17.

Objectives

Multidrug resistance-related protein 1 (MRP1) overexpression is a well acknowledged predictor of poor response to chemotherapy, but MRP1 also correlated to better prognosis in some reports, especially for patients not pretreated with chemotherapy. In our previous study, we found nuclear translocation of MRP1 in mucoepidermoid carcinoma (MEC) for the first time. The purpose of this study was to further investigate the function of nuclear MRP1 in MEC.

Materials and Methods

Human MEC tissue samples of 125 patients were selected and stained using immunohistochemistry. The expression level of total MRP1/nuclear MRP1 of each sample was evaluated by expression index (EI) which was scored using both qualitative and quantitative analysis. The correlations between the clinicopathologic parameters and the EI of nuclear MRP1 were analyzed using Spearman’s rank correlation analysis, respectively. The effects of RNAi-mediated downregulation of nuclear MRP1 on MEC cells were assessed using flow cytometric analysis, MTT assay, plate colony formation assay, transwell invasion assay and monolayer wound healing assay.

Results

In this study, we found the EI of nuclear MRP1 was negatively correlated to the pathologic grading (r = -0.498, P<0.01) / clinical staging (r = -0.41, P<0.01) / tumor stage (r = -0.28, P = 0.02) / nodal stage (r = -0.29, P<0.01) of MEC patients. The RNAi-mediated downregulation of nuclear MRP1 further proved that the downregulation of nuclear MRP1 could increase the cell replication, growth speed, colony formation efficiency, migration and invasion ability of MEC cells.

Conclusion

Our results suggested that nuclear MRP1 is highly associated with better prognosis of human mucoepidermoid carcinoma and further study of its function mechanism would provide clues in developing new treatment modalities of MEC.  相似文献   

18.

Background

Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6).

Results

MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures.

Conclusion

A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.  相似文献   

19.
There is increasing evidence that Special AT-rich sequence-binding protein 1 (SATB1) is aberrantly expressed in several cancers and is correlated with clinicopathologic parameters in these tumors. In this study, we showed over-expression of SATB1 in 80 cases of colorectal cancer and in 3 colorectal cancer cell lines and found expression levels were strongly associated with tumor differentiation and stage. Expression levels of SATB1 protein were higher in poorly-differentiated as compared with well-differentiated cell lines, and both quantity and distribution patterns of SATB1 were associated with tumor differentiation and pTNM stage. Strikingly, we further investigated the effect of down regulation of SATB1 expression on malignant phenotypic features in colorectal cancer cells in vitro, and showed that SABT1 down-regulation negatively affected growth potential, anchorage-independent colony formation and cancer cell invasion, and resulted in increased apoptosis. SATB1 expression was positively associated with the expression of various biological and genetic markers, including Cyclin D1, MMP-2, NF-κB, and PCNA, and was associated with loss of APC and BRAFV600E. These findings suggest that SATB1 is involved in the carcinogenesis, development and progression of colorectal cancer.  相似文献   

20.
Angiogenesis, the recruitment and re-configuration of pre-existing vasculature, is essential for tumor growth and metastasis. Increased tumor vascularization often correlates with poor patient outcomes in a broad spectrum of carcinomas. We identified four jointed box 1 (FJX1) as a candidate regulator of tumor angiogenesis in colorectal cancer. FJX1 mRNA and protein are upregulated in human colorectal tumor epithelium as compared with normal epithelium and colorectal adenomas, and high expression of FJX1 is associated with poor patient prognosis. FJX1 mRNA expression in colorectal cancer tissues is significantly correlated with changes in known angiogenesis genes. Augmented expression of FJX1 in colon cancer cells promotes growth of xenografts in athymic mice and is associated with increased tumor cell proliferation and vascularization. Furthermore, FJX1 null mice develop significantly fewer colonic polyps than wild-type littermates after combined dextran sodium sulfate (DSS) and azoxymethane (AOM) treatment. In vitro, conditioned media from FJX1 expressing cells promoted endothelial cell capillary tube formation in a HIF1-α dependent manner. Taken together our results support the conclusion that FJX1 is a novel regulator of tumor progression, due in part, to its effect on tumor vascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号