首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

2.
Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.  相似文献   

3.
During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

4.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

5.
Recruitment and activation of brite (or beige) adipocytes has been advocated as a potential avenue for manipulating whole-body energy expenditure. Despite numerous studies illustrating the differences in gene and protein markers between brown, brite and white adipocytes, there is very little information on the adrenergic regulation and function of these brite adipocytes. We have compared the functional (cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, extracellular acidification rates, calcium influx) profiles of mouse adipocytes cultured from three contrasting depots, namely interscapular brown adipose tissue, and inguinal or epididymal white adipose tissues, following chronic treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone. Prototypical brown adipocytes readily express β3-adrenoceptors, and β3-adrenoceptor stimulation increases cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, and extracellular acidification rates. Treatment of brown adipocytes with rosiglitazone increases uncoupling protein 1 (UCP1) levels, and increases β3-adrenoceptor mitochondrial function but does not affect glucose uptake responses. In contrast, inguinal white adipocytes only express UCP1 and β3-adrenoceptors following rosiglitazone treatment, which results in an increase in all β3-adrenoceptor-mediated functions. The effect of rosiglitazone in epididymal white adipocytes, was much lower compared to inguinal white adipocytes. Rosiglitazone also increased α1-adrenoceptor mediated increases in calcium influx and glucose uptake (but not mitochondrial function) in inguinal and epididymal white adipocytes. In conclusion, the PPARγ agonist rosiglitazone promotes the induction and function of brite adipocytes cultured from inguinal and epididymal white adipose depots.  相似文献   

6.
An increase in energy intake and/or a decrease in energy expenditure lead to fat storage, causing overweight and obesity phenotypes. The objective of this review was to analyse, for the first time using a systematic approach, all published evidence from the past 8 years regarding the molecular pathways linking non‐shivering thermogenesis and obesity in mammals, focusing on mechanisms involved in brown adipose tissue development. Two major databases were scanned from 2006 to 2013 using ‘brown adipose tissue’ AND ‘uncoupling protein‐1’ AND ‘mammalian thermoregulation’ AND ‘obesity’ as key words. A total of 61 articles were retrieved using the search criteria. The available research used knockout methodologies, various substances, molecules and agonist treatments, or different temperature and diet conditions, to assess the molecular pathways linking non‐shivering thermogenesis and obesity. By integrating the results of the evaluated animal and human studies, our analysis identified specific molecules that enhance non‐shivering thermogenesis and metabolism by: (i) stimulating ‘brite’ (brown‐like) cell development in white adipose tissue; (ii) increasing uncoupling protein‐1 expression in brite adipocytes; and (iii) augmenting brown and/or brite adipose tissue mass. The latter can be also increased through low temperature, hibernation and/or molecules involved in brown adipocyte differentiation. Cold stimuli and/or certain molecules activate uncoupling protein‐1 in the existing brown adipocytes, thus increasing total energy expenditure by a magnitude proportional to the number of available brown adipocytes. Future research should address the interplay between body mass, brown adipose tissue mass, as well as the main molecules involved in brite cell development.  相似文献   

7.
The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli (“browning process”). Brown-like adipocytes that appear in white fat depots have been called “brite” (from brown-in-white) or “beige” adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

8.
The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

9.
10.
11.
Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.  相似文献   

12.
13.
14.
Recent investigations have showed that the functional thermogenic adipocytes are present in both infants and adult humans. Accumulating evidence suggests that the coexistence of classical and inducible brown (brite) adipocytes in humans at adulthood and these adipocytes function to generate heat from energy resulting in reducing body fat and improving glucose metabolism. Human thermogenic adipocytes can be differentiated in vitro from stem cells, cell lines, or adipose stromal vascular fraction. Pre-activated human brite adipocytes in vitro can maintain their thermogenic function in normal or obese immunodeficient mice; therefore, they improve glucose homeostasis and reduce fat mass in obese animals. These key findings have opened a new door to use in vitro thermogenic adipocytes as a cell therapy to prevent obesity and related disorders. Thus, this paper intends to highlight our knowledge in aspects of in vitro human brite/brown adipocytes for the further studies.  相似文献   

15.
Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C) or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.  相似文献   

16.
H Masaki  T Ohta 《FEBS letters》1982,149(1):129-132
Thermogenin is the purine-nucleotide binding polypeptide in brown adipose tissue mitochondria (Mr 32 000) which confers upon these mitochondria the ability to produce heat. An enzyme-linked immunosorbent assay (ELISA) has been developed to demonstrate and quantitate the occurrence of thermogenin antigen in small amounts of tissue, and thus to characterize different depots of fat tissue as white or brown. The extreme sensitivity of the method allows determination of thermogenin in samples equivalent to <1 mg tissue. The results indicate that thermogenin seems to be exclusively localised in brown fat mitochondria (as compared to white fat, liver or heart muscle mitochondria), and thermogenin antigen could only be found in brown adipocytes (as compared to white adipocytes). Thus, brown and white adipose tissue are probably ontogenetically different  相似文献   

17.
Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown‐like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).  相似文献   

18.
In the lamb, the uncoupling protein-1 (UCP1) content of perirenal adipose tissue at birth is an important factor in heat production by non-shivering thermogenesis and the prevention of hypothermia. This study examines UCP1 gene expression and protein content in perirenal adipose tissue over the first 15 days of life by in situ hybridisation and immunohistochemistry. UCP1 mRNA was detected at birth in 30% of adipocytes, and in approximately 24% of fat cells at 2 days of life. However, by 5 days of age and thereafter UCP1 mRNA was undetectable. Immunoreactive UCP1 was present in all adipocytes at birth and at 2 days of age, and remained detectable in a decreasing proportion of cells until day 10 of life. By 15 days of age no immunoreactive UCP1 was detected and the perirenal adipose tissue had the appearance of white fat. It is concluded that UCP1 gene expression is suppressed in most adipocytes in perirenal adipose tissue of newborn lambs, and gene expression rapidly falls in the remaining adipocytes over the first 5 days of postnatal life. In contrast, immunoreactive UCP1, a characteristic of brown adipose tissue, was present in many adipocytes for up to 10 days of age, suggesting that UCP1 has a long half-life in lambs. All adipocytes in perirenal adipose tissue of newborn lambs appear to be functionally brown, but over the first 2 weeks of postnatal life there is a complete transformation to white adipocytes.  相似文献   

19.
20.
The role of white and brown adipose tissues in energy metabolism is well established. However, the existence of brown fat in adult humans was until very recently a matter of debate, and the molecular mechanisms underlying brown adipocyte development remained largely unknown. In 2009, several studies brought direct evidence for functional brown adipose tissue in adults. New factors involved in brown fat cell differentiation have been identified. Moreover, work on the origin of fat cells took an unexpected path with the recognition of different populations of brown fat cell precursors according to the anatomical location of the fat depots: a precursor common to skeletal muscle cells and brown adipocytes from brown fat depots, and a progenitor cell common to white adipocytes and brown adipocytes that appear in certain conditions in white fat depots. There is also mounting evidence that mature white adipocytes, including human fat cells, can be converted into brown fat-like adipocytes, and that the typical fatty acid storage phenotype of white adipocyte can be altered towards a fat utilization phenotype. These data open up new opportunities for the development of drugs for obesity and its metabolic and cardiovascular complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号