首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer’s patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer’s patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.  相似文献   

2.
In the luminal contents of metronidazole-treated rats, there was a dominant Bifidobacterium species. A strain has been isolated, its 16S rRNA gene has been sequenced, and the strain has been named Bifidobacterium pseudolongum strain Patronus. In this study, using an experimental model of healthy rats, the effects of metronidazole treatment and B. pseudolongum strain Patronus administration on the luminal and mucosa-associated microbiota and on gut oxidation processes were investigated. Metronidazole treatment and the daily gavage of rats with B. pseudolongum strain Patronus increased the numbers of bifidobacteria in cecal contents and in cecal mucosa-associated microbiota compared with those in control rats. Metronidazole reduced the colonic oxidative damage to proteins. This is the first evidence that B. pseudolongum strain Patronus exerts an effect on a biomarker of oxidative damage by reducing the susceptibility to oxidation of proteins in the colon and the small bowel. Antioxidant effects of metronidazole could be linked to the bifidobacterial increase but also to other bacterial modifications.  相似文献   

3.
In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S-rDNA) established that at day 7, antibiotic-treated microbiota showed a 10-fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid-encoded quinolone, oqxB and propagation of mcr-2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease- and obese-related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans.  相似文献   

4.
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.  相似文献   

5.
Clostridium perfringens causes enteric diseases in animals and humans. In poultry, avian-specific C. perfringens strains cause necrotic enteritis, an economically significant poultry disease that costs the global industry over $2 billion annually in losses and control measures. With removal of antibiotic growth promoters in some countries this disease appears to be on the rise. In experimental conditions used to study disease pathogenesis and potential control measures, reproduction of the disease relies on the use of predisposing factors such as Eimeria infection and the use of high protein diets, indicating complex mechanisms involved in the onset of necrotic enteritis. The mechanisms by which the predisposing factors contribute to disease progression are not well understood but it has been suggested that they may cause perturbations in the microbiota within the gastrointestinal tract. We inspected changes in cecal microbiota and short chain fatty acids (SCFA) induced by Eimeria and fishmeal, in birds challenged or not challenged with C. perfringens. C. perfringens challenge in the absence of predisposing factors did not cause significant changes in either the alpha or beta diversity of the microbiota nor in concentrations of SCFA. Moreover, there was no C. perfringens detected in the cecal microbiota 2 days post-challenge without the presence of predisposing factors. In contrast, both fishmeal and Eimeria caused significant changes in microbiota, seen in both alpha and beta diversity and also enabled C. perfringens to establish itself post challenge. Eimeria had its strongest influence on intestinal microbiota and SCFA when combined with fishmeal. Out of 6 SCFAs measured, including butyric acid, none were significantly influenced by C. perfringens, but their levels were strongly modified following the use of both predisposing factors. There was little overlap in the changes caused following Eimeria and fishmeal treatments, possibly indicating multiple routes for progressing towards clinical symptoms of necrotic enteritis.  相似文献   

6.
Antibiotic disruption of the intestinal microbiota may cause susceptibility to pathogens that is resolved by progressive bacterial outgrowth and colonization. Succession is central to ecological theory but not widely documented in studies of the vertebrate microbiome. Here, we study succession in the hamster gut after treatment with antibiotics and exposure to Clostridium difficile. C. difficile infection is typically lethal in hamsters, but protection can be conferred with neutralizing antibodies against the A and B toxins. We compare treatment with neutralizing monoclonal antibodies (mAb) to treatment with vancomycin, which prolongs the lives of animals but ultimately fails to protect them from death. We carried out longitudinal deep sequencing analysis and found distinctive waves of succession associated with each form of treatment. Clindamycin sensitization prior to infection was associated with the temporary suppression of the previously dominant Bacteroidales and the fungus Saccinobaculus in favor of Proteobacteria. In mAb-treated animals, C. difficile proliferated before joining Proteobacteria in giving way to re-expanding Bacteroidales and the fungus Wickerhamomyces. However, the Bacteroidales lineages returning by day 7 were different from those that were present initially, and they persisted for the duration of the experiment. Animals treated with vancomycin showed a different set of late-stage lineages that were dominated by Proteobacteria as well as increased disparity between the tissue-associated and luminal cecal communities. The control animals showed no change in their gut microbiota. These data thus suggest different patterns of ecological succession following antibiotic treatment and C. difficile infection.  相似文献   

7.
Considerable evidence suggests that the gut microbiota is complex in many mammals and gut bacteria communities are essential for maintaining gut homeostasis. To date the research on the gut microbiota of donkey is surprisingly scarce. Therefore, we performed high-throughput sequencing of the 16S rRNA genes V5–V6 hypervariable regions from gut fecal material to characterize the gut microbiota of healthy donkeys and compare the difference of gut microbiota between male and female donkeys. Sixty healthy donkeys (30 males and 30 females) were enrolled in the study, a total of 915,691 validated reads were obtained, and the bacteria found belonged to 21 phyla and 183 genera. At the phylum level, the bacterial community composition was similar for the male and female donkeys and predominated by Firmicutes (64 % males and 64 % females) and Bacteroidetes (23 % males and 21 % females), followed by Verrucomicrobia, Euryarchaeota, Spirochaetes, and Proteobacteria. At the genus level, Akkermansia was the most abundant genus (23 % males and 17 % females), followed by Sporobacter, Methanobrevibacter, and Treponema, detected in higher distribution proportion in males than in females. On the contrary, Acinetobacter and Lysinibacillus were lower in males than in females. In addition, six phyla and 15 genera were significantly different between the male and female donkeys for species abundance. These findings provide previously unknown information about the gut microbiota of donkeys and also provide a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in donkey and other animals.  相似文献   

8.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

9.
Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope (13C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [13C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect 13C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the 13C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA–stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism.  相似文献   

10.
Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn''s disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1β levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.  相似文献   

11.
BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley β-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in β-glucan hydrolysates. The results of this study have relevance to the use of purified β-glucan products as dietary supplements for human consumption.  相似文献   

12.
Cecal microbiome divergence of broiler chickens by sex and body weight   总被引:1,自引:0,他引:1  
The divergence of gut bacterial community on broiler chickens has been reported as potentially possible keys to enhancing nutrient absorption, immune systems, and increasing poultry health and performance. Thus, we compared cecal bacterial communities and functional predictions by sex and body weight regarding the association between cecal microbiota and chicken growth performance. In this study, a total of 12 male and 12 female 1-day-old broiler chickens were raised for 35 days in 2 separate cages. Chickens were divided into 3 subgroups depending on body weight (low, medium, and high) by each sex. We compared chicken cecal microbiota compositions and its predictive functions by sex and body weight difference. We found that bacterial 16S rRNA genes were classified as 3 major phyla (Bacteroidetes, Firmicutes, and Proteobacteria), accounting for > 98% of the total bacterial community. The profiling of different bacterial taxa and predictive metagenome functions derived from 16S rRNA genes were performed over chicken sex and bodyweight. Male chickens were related to the enrichment of Bacteroides while female chickens were to the enrichment of Clostridium and Shigella. Male chickens with high body weight were associated with the enrichment of Faecalibacterium and Shuttleworthia. Carbohydrate and lipid metabolisms were suggested as candidate functions for weight gain in the males. This suggests that the variation of cecal bacterial communities and their functions by sex and body weight may be associated with the differences in the growth potentials of broiler chickens.  相似文献   

13.

Background

Women living with HIV and co-infected with bacterial vaginosis (BV) are at higher risk for transmitting HIV to a partner or newborn. It is poorly understood which bacterial communities constitute BV or the normal vaginal microbiota among this population and how the microbiota associated with BV responds to antibiotic treatment.

Methods and Findings

The vaginal microbiota of 132 HIV positive Tanzanian women, including 39 who received metronidazole treatment for BV, were profiled using Illumina to sequence the V6 region of the 16S rRNA gene. Of note, Gardnerella vaginalis and Lactobacillus iners were detected in each sample constituting core members of the vaginal microbiota. Eight major clusters were detected with relatively uniform microbiota compositions. Two clusters dominated by L. iners or L. crispatus were strongly associated with a normal microbiota. The L. crispatus dominated microbiota were associated with low pH, but when L. crispatus was not present, a large fraction of L. iners was required to predict a low pH. Four clusters were strongly associated with BV, and were dominated by Prevotella bivia, Lachnospiraceae, or a mixture of different species. Metronidazole treatment reduced the microbial diversity and perturbed the BV-associated microbiota, but rarely resulted in the establishment of a lactobacilli-dominated microbiota.

Conclusions

Illumina based microbial profiling enabled high though-put analyses of microbial samples at a high phylogenetic resolution. The vaginal microbiota among women living with HIV in Sub-Saharan Africa constitutes several profiles associated with a normal microbiota or BV. Recurrence of BV frequently constitutes a different BV-associated profile than before antibiotic treatment.  相似文献   

14.
The Tibetan swine (TIS) is a non-ruminant herbivore with high disease resistance. Also, it has the ability to digest plants with high fiber content. However, it is not known whether any relationship exist between these characteristics of the TIS and its cecal microbiota. Thus, this study aims to investigate the cecal microbiota of the adult TIS using high-throughput sequencing techniques in order to explore possible relationships between these unique characteristics of the TIS (high disease resistance and ability to digest high fiber plants) and its cecal microbiota. PIC pigs (lean type) were chosen as controls. The results show that 75,069 valid sequences of the 16S rRNA gene at V4-V5 region were obtained in the cecal content of TIS. They were composed of 15 phyla, 70 genera and divided into 660 Operational Taxonomic Units (OTUs). Bacteroidetes and Firmicutes were the predominant phyla in both breeds, but TIS had more Bacteroidetes than Firmicutes. Also, 42.4% of the cecal bacteria were found to be unclassified and uncultured. Many cellulolytic bacteria were also found in the two breeds. TIS (88.10%) had much higher abundance in the core bacterial communities than PIC pigs (81.29%), and the proportion of Bacteroides and Spirochaetes that can effectively degrade cellulose were 6.01 and 6.40% higher than PIC pigs, respectively, while Proteobacteria that are closely related to gastrointestinal diseases were 1.61% lower than PIC pigs. Thus, the disease resistance of the TIS and its ability to digest plants with high fiber content may be related to high abundance of core bacterial communities as well as the large number of unknown and unclassified bacteria.  相似文献   

15.
The investigation provides molecular analyses of the faecal microbiota in type 2 diabetic patients. In order to characterise the gut microbiota in diabetic patients and to assess whether there are changes in the diversity and similarity of gut microbiota in diabetic patients when compared with healthy individuals, bacterial DNAs from 16 type 2 diabetic patients and 12 healthy individuals were extracted from faecal samples and characterised by PCR-denaturing gradient gel electrophoresis (DGGE) with primers specifically targeting V3 region of the 16S rRNA gene, as well as been sequenced for excised gel bands. The counts of Bacteroides vulgatus, Clostridium leptum subgroup and Bifidobacterium genus were assessed using quantitative PCR. By comparing species diversity profiles of two groups, we observed that there were no significant differences between diabetic and healthy group, although a few diabetic individuals (D6, D8) exhibited a remarkable decrease in species profiles. As for the similarity index, it was lower in inter-group than that in intra-group, which showed that the composition of gut microbiota in diabetic group might be changed due to diabetes status. Sequencing results also revealed that bacterial composition of diabetic group was different from that of the healthy group. B. vulgatus and Bifidobacterium genus were low represented in the microbiota of diabetic group, and the significant decrease was observed for Bifidobacterium by real-time PCR. Taken together, in this work we observed the characterisation of gut microbiota in diabetic patients, which suggestes that the gut microbiota of diabetes patients have some changes associated with occurrence and development of diabetes.  相似文献   

16.
Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four-year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.  相似文献   

17.
Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS.  相似文献   

18.
Malassezia yeasts are part of the resident cutaneous microbiota, and are also associated with skin diseases such as seborrheic dermatitis (SD). The role these fungi play in skin diseases and why they are pathogenic for only some individuals remain unclear. This study aimed to characterize Malassezia microbiota from different body sites in healthy and SD subjects from Brazil. Scalp and forehead samples from healthy, mild SD and severe SD subjects were collected. Non-scalp lesions from severe SD patients were also sampled. 5.8S rDNA/ITS2 amplicons from Malassezia sp. were analyzed by RFLP and sequencing. Results indicate that Malassezia microbiota did not group according to health condition or body area. Phylogenetic analysis revealed that three groups of sequences did not cluster together with any formally described species, suggesting that they might belong to potential new species. One of them was found in high proportions in scalp samples. A large variety of Malassezia subtypes were detected, indicating intra-specific diversity. Higher M. globosa proportions were found in non-scalp lesions from severe SD subjects compared with other areas, suggesting closer association of this species with SD lesions from areas other than scalp. Our results show the first panorama of Malassezia microbiota in Brazilian subjects using molecular techniques and provide new perspectives for further studies to elucidate the association between Malassezia microbiota and skin diseases.  相似文献   

19.
20.
A clinical challenge to nearly every primate facility in North America is chronic idiopathic diarrhea (CID), the pathogenesis of which has yet to be fully elucidated. However, wild macaques appear resistant to CID, a trend that we observed in the free-ranging population of the Caribbean Primate Research Center. The gastrointestinal microbiota has been shown to have a significant role in the pathogenesis of disease and in maintaining normal health and development of the gut. In humans, chronic diarrhea is associated with alteration of the gut microbiota, which has lower bacterial diversity than does the microbiota of healthy humans. The current study was designed to describe and compare the fecal bacterial microbiota of healthy corralled, CID corralled, and healthy, free-ranging macaques. Fresh fecal samples were collected from healthy corralled (HC; n = 30) and CID (n = 27) rhesus macaques and from healthy macaques from our free-ranging colony (HF; n = 43). We excluded macaques that had received antibiotics during the preceding 60 d (90 d for healthy animals). Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced and compared with known databases. The relative abundance of Proteobacteria was higher in CID animals than HC animals, but otherwise few differences were found between these 2 groups. HF macaques were differentially enriched with Christensenellaceae and Helicobacter, which are highly associated with a ‘healthy’ gut in humans, as compared to corralled animals, whereas CID animals were enriched with Proteobacteria, which are associated with dysbiosis in other species. These results indicate that environment has a greater influence than health status on the gut microbiota. Furthermore, the current data provided targets for future studies on potential clinical interventions, such as probiotics and fecal transplants.

Chronic idiopathic diarrhea (CID; also called idiopathic chronic diarrhea and chronic enterocolitis) is a clinical challenge that plagues nearly every large primate facility in North America. For example, the Oregon National Primate Center reports that CID comprises nearly 30% of their clinical caseload.20 At the Caribbean Primate Research Center, a review of the medical records database at the Sabana Seca Field Station (SSFS), where animals are housed in large, outdoor corrals, indicates that treatment for diarrhea comprises nearly 50% of the clinical caseload.Information on CID in wild macaques is sparse, and an exact cause for CID in research macaques has not been identified, despite extensive study. Fecal bacterial culture has yielded mixed results, with no specific pathogen consistently isolated from animals with CID. An increased prevalence of Campylobacter, Shigella, and Yersinia species in animals with chronic diarrhea compared with healthy animals has been reported.59 However, the overall prevalence in diarrheic animals was around 25% for Campylobacter and well below 25% for Shigella and Yersinia.59 Similarly, one study reported that approximately 30% of chronic diarrheic animals had at least one historic bout of diarrhea that was culture positive and 40% culture positive for Campylobacter at the time of necropsy.38 Others have reported that fecal cultures are regularly negative for these and other common gastrointestinal pathogen,28,38 which is consistent with our experience.The collective, interacting genomes of the symbiotic microorganisms in the gastrointestinal tract are referred to as the gastrointestinal microbiome.34 The microbiome has a significant role in the pathogenesis of disease and contributes to normal health and development of the gut.19,67 In humans, chronic diarrhea due to Clostridium difficile infection is associated with alteration of the gut microbiota (also known as dysbiosis), which has lower bacterial diversity than does the microbiota of healthy humans. This finding led to the successful use of fecal bacterial transplantation to restore the flora to normal.17,39 Similarly, our group identified significant differences in the bacterial microbiota and enrichment of Proteobacteria (a phylum associated with dysbiosis) in diarrheic calves and horses as compared with healthy ones.3,23 We also reported that diarrheic calves had lower relative abundance of genes responsible for metabolism of various nutrients, indicating that nutrient availability can be altered in diarrheic states.21 A better understanding of the organisms present in the gut of healthy and diarrheic macaques may offer new insights into the pathogenesis of this condition, and lead to new approaches to prevent and treat CID in NHP.The current study was designed to describe and compare the fecal bacterial microbiota of healthy free-ranging, semiwild rhesus macaques (HF group), healthy macaques living in large, outdoor corrals (HC group), and corralled macaques with CID. The composition of the fecal bacterial microbiota from these 3 groups was compared to determine whether differences in bacterial composition are present among the groups. Identification of such changes may provide feasible starting points for studying the role of the intestinal microbiota in the pathophysiology of CID and possible treatment and preventive measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号