首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes are cell-secreted vesicles less than ≈150 nm in size that contain gene-encoding and gene-silencing RNA and cytosolic proteins with roles in intercellular communication. Interest in the use of exosomes as targeted drug delivery vehicles has grown since it was shown that they can bind specific cells and deliver intact genetic material to the cytosol of target cells. We isolated extracellular vesicles (EVs), consisting of a mixture of exosomes and microvesicles, from prostate (PC3) and melanoma (M21) cancer cell lines using serial ultracentrifugation. Interrogation via western blot analysis confirmed enrichment of CD63, a widely recognized EV surface protein, in the EV pellet from both cell lines. Nanoparticle tracking analysis (NTA) of EV pellets revealed that the two cell lines produced distinct vesicle size profiles in the ≈30 nm to ≈400 nm range. NTA further showed that the fraction of exosomes to all EVs was constant, suggesting cellular mechanisms that control the fraction of secreted vesicles that are exosomes. Transmission electron microscopy (TEM) images of the unmodified PC3 EVs showed vesicles with cup-like (i.e., nanocapsule) and previously unreported prolate morphologies. The observed non-spherical morphologies for dehydrated exosomal vesicles (size ≈30–100 nm) are most likely related to the dense packing of proteins in exosome membranes. Solubility phase diagram data showed that EVs enhanced the solubility of paclitaxel (PTX) in aqueous solution compared to a water-only control. Combined with their inherent targeting and cytosol delivery properties, these findings highlight the potential advantages of using exosomes as chemotherapeutic drug carriers in vivo.  相似文献   

2.
3.
Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients'' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.  相似文献   

4.
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.  相似文献   

5.
外泌体是来源于细胞内吞噬作用的细胞外囊泡(extracellular vesicles,EVs),其含有特定的蛋白质、脂质、RNA和DNA,能将信号传递给受体细胞,从而介导细胞通讯过程.缺氧作为一种严重的细胞应激,是脑部疾病的重要特征,可以诱导外泌体的释放并影响其内容物.越来越多的证据显示,外泌体携带的生物活性物质可以...  相似文献   

6.
7.
Prion diseases are transmissible neurodegenerative disorders affecting both humans and animals. The cellular prion protein, PrPC, and the abnormal infectious form, PrPSc, are found associated with exosomes, which are small 50–130 nm vesicles released from cells. Exosomes also contain microRNAs (miRNAs), a class of non-coding RNA, and have been utilized to identify miRNA signatures for diagnosis of disease. While some miRNAs are deregulated in prion-infected brain tissue, the role of miRNA in circulating exosomes released during prion disease is unknown. Here, we investigated the miRNA profile in exosomes released from prion-infected neuronal cells. We performed the first small RNA deep sequencing study of exosomes and demonstrated that neuronal exosomes contain a diverse range of RNA species including retroviral RNA repeat regions, messenger RNA fragments, transfer RNA fragments, non-coding RNA, small nuclear RNA, small nucleolar RNA, small cytoplasmic RNA, silencing RNA as well as known and novel candidate miRNA. Significantly, we show that exosomes released by prion-infected neuronal cells have increased let-7b, let-7i, miR-128a, miR-21, miR-222, miR-29b, miR-342-3p and miR-424 levels with decreased miR-146 a levels compared to non-infected exosomes. Overall, these results demonstrate that circulating exosomes released during prion infection have a distinct miRNA signature that can be utilized for diagnosis and understanding pathogenic mechanisms in prion disease.  相似文献   

8.
Brain development requires precise orchestration of cellular events through the coordinate exchange of information between distally located cells. One mechanism by which intercellular communication is achieved is through the transfer of extracellular vesicles (EVs). Exosomes are EVs that carry lipids, nucleic acids, and proteins and are detectable in most biological fluids including cerebrospinal fluid (CSF). Here we report that CSF EV concentrations undergo age dependent fluctuations. We characterized EV RNA content by next generation small RNA sequencing and miRNA microarray analysis and identified a temporal shift in CSF EV content. CSF EVs encapsulated miRNAs that contain a conserved hnRNPA2/B1 recognition sequence. We found that hnRNPA2/B1-containing EVs were produced by choroid plexus epithelial cells and that hnRNPA2/B1 containing EVs decreased with age. These results provide insight into EV exchange of miRNAs within the central nervous system and a framework to understand how changes in EVs may have an important impact on brain development.  相似文献   

9.
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.  相似文献   

10.

Background

Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA, including microRNA, is present in the urine enclosed in detached cells or in extracellular vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and disease-specific microRNA in urine may aid early diagnosis of organ-specific pathology. In this study, we applied barcoded deep sequencing to profile microRNAs in urine of healthy volunteers, and characterized the effects of sex, urine fraction (cells vs. EVs) and repeated voids by the same individuals.

Results

Compared to urine-cell-derived small RNA libraries, urine-EV-derived libraries were relatively enriched with miRNA, and accordingly had lesser content of other small RNA such as rRNA, tRNA and sn/snoRNA. Unsupervised clustering of specimens in relation to miRNA expression levels showed prominent bundling by specimen type (urine cells or EVs) and by sex, as well as a tendency of repeated (first and second void) samples to neighbor closely. Likewise, miRNA profile correlations between void repeats, as well as fraction counterparts (cells and EVs from the same specimen) were distinctly higher than correlations between miRNA profiles overall. Differential miRNA expression by sex was similar in cells and EVs.

Conclusions

miRNA profiling of both urine EVs and sediment cells can convey biologically important differences between individuals. However, to be useful as urine biomarkers, careful consideration is needed for biofluid fractionation and sex-specific analysis, while the time of voiding appears to be less important.  相似文献   

11.
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. RESULTS: Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146 overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cells types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p). CONCLUSION: The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.  相似文献   

12.
Tumor cells secrete extracellular vesicles (EVs) for intercellular communication. EVs by transporting different proteins, nucleic acids, and lipids contribute to affect target cell function and fate. ‎EVs which originate directly from multivesicular bodies so-called exosomes have dramatically fascinated the attention of researchers owing to their ‎pivotal roles in the tumorigenesis. Breast cancer, arising from milk-producing cells, is the most identified cancer among women and has become the leading cause of cancer-related death in women globally. Although different therapies are applied to eliminate breast tumor cells, however, the efficient therapy and survival rate of patients remain challenges. Growing evidence ‎shows exosomes from breast cancer cells contribute to proliferation, metastasis, angiogenesis, chemoresistance, and also radioresistance and, thus carcinogenesis. Additionally, these exosomes may serve as a cancer treatment tool because they are a good candidate for cancer diagnosis (as biomarker) and therapy (as drug-carrier). Despite recent development in the biology of tumor-derived exosomes, the detailed mechanism of tumorigenesis, and exosome-based cancer-therapy remain still indefinable. Here, we discuss the key function of breast cancer-derived exosomes in tumorgenesis and shed light on the possible clinical application of these exosomes in breast cancer treatment.  相似文献   

13.
Increasing evidence indicates that extracellular vesicles (EVs) secreted from tumor cells play a key role in the overall progression of the disease state. EVs such as exosomes are secreted by a wide variety of cells and transport a varied population of proteins, lipids, DNA, and RNA species within the body. Gliomas constitute a significant proportion of all primary brain tumors and majority of brain malignancies. Glioblastoma multiforme (GBM) represents grade IV glioma and is associated with very poor prognosis despite the cumulative advances in diagnostic procedures and treatment strategies. Here, the authors describe the progress in understanding the role of EVs, especially exosomes, in overall glioma progression, and how new research is unraveling the utilities of exosomes in glioma diagnostics and development of next‐generation therapeutic systems. Finally, based on an understanding of the latest scientific literature, a model for the possible working of therapeutic exosomes in glioma treatment is proposed.  相似文献   

14.
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid.  相似文献   

15.
Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression. However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) inhibits the internalization of exosomes and that annexins are essential for the exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on the cell surface.  相似文献   

16.
Cell communication through extracellular vesicles (EVs) has been defined for many years and it is not limited only to neighboring cells, but also distant ones in organisms receive these signals. These vesicles are secreted from the variety of cells and are composed of a distinctive component such as proteins, lipids, and nucleic acids. EVs have different classified subgroups regarding their cell origin, in this context, exosomes are the most appealing particles in cell biology, especially clinical in recent years and are represented as novel therapeutic agents with numerous advantages alongside and/or over cell therapy. However, cell therapy had a hopeful outcome in gastrointestinal diseases which have minimal alternatives in their treatments. Inflammatory bowel disease (IBD), liver fibrosis, gastrointestinal cancers are the examples that cell therapy and immunotherapy were applied in their treatment, therefore, the cell products like exosomes are the beneficial option in their treatment even cancers with promising results in animal models. In this review, we consider the main defined biogenesis, function, and component of secreted exosomes in different cells with a specific focus on the potential application of these exosomes as a cell-free therapeutic approach in gastrointestinal diseases like IBD, gastric cancer, and colon cancer. Additionally, exosomes role as therapeutic reagents mainly mesenchymal stem cells and dendritic cell-derived exosomes in different studies have been under intense investigation and even they are being studied in different clinical trials. Therefore, all these striking functions described for secretome implies the importance of these biocarriers.  相似文献   

17.
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell‐to‐cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.1S and U266 MM cell lines. First, we compared the protein identifications between the vesicles and cellular lysates of each cell line finding a large overlap in protein identifications. Next, we applied label‐free spectral count quantitation to determine proteins with differential abundance between the groups. Finally, we used bioinformatics to categorize proteins with significantly different abundances into functional groups. The results illustrate the first use of label‐free spectral counting applied to determine relative protein abundances in EVs.  相似文献   

18.
No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC‐EVs—owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti‐inflammatory, amyloid‐β degrading, and neurotrophic activities—may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC‐EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg .  相似文献   

19.
Danqi Wang  Wei Sun 《Proteomics》2014,14(16):1922-1932
Extracellular microvesicles (EVs) are membranous vesicles, which are released from diverse cells. These EVs have also been found in a wide range of body fluids. The cargo of EVs, including proteins, lipids, carbohydrates, and nucleic acids, can be stably preserved in EVs. Researchers have found that EVs can mediate intercellular communication by shuttling the cargo components. Therefore, EVs can be used for the identification of disease‐specific biomarkers. As one class of EVs, urinary exosomes can reflect the status of the renal system. Moreover, urinary exosome analysis can minimize the interference of high abundant proteins in the whole urine sample. Therefore, urinary exosomes have gained much attention in recent years. In this review, we present a comprehensive summary of urinary exosome studies in recent years, including collection, storage, and isolation methods. The normal and disease proteomic analyses of urinary exosomes are also presented. Thus, this review may provide a valuable reference for future research.  相似文献   

20.
We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号