首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To identify the negative effect on treatment results of reserving damaged intervertebral discs when treating type B and type C spinal fracture-dislocations through a one-stage posterior approach.

Methods

This is a retrospective review of 53 consecutive patients who were treated in our spine surgery center from January 2005 to May 2012 due to severe thoracolumbar spinal fracture-dislocation. The patients in Group A (24 patients) underwent long-segment instrumentation laminectomy with pedicle screw-rod fixators for neural decompression. In Group B (29 patients), the patients underwent long-segment instrumentation laminectomy with pedicle screw-rod fixators for neural decompression evacuating of the ruptured disc and inserting of a bone graft into the evacuated disc space for interbody fusion. The mean time between injury and operation was 4.1 days (range 2–15 days). The clinical, radiologic and complication outcomes were analyzed retrospectively.

Results

Periodic follow-ups were carried out until an affirmative union or treatment failure took place. A progressive kyphosis angle larger than 10°, loss of disc height, pseudoarthrosis, recurrence of dislocation or subluxation, or instrument failure before fusion were considered treatment failures. Treatment failures were detected in 13 cases in Group A (failure rate was 54.2%). In Group B, there were 28 cases in which definitive bone fusion was demonstrated on CT scans, and CT scans of the other cases demonstrated undefined pseudoarthrosis without hardware failure. There were statistically significant differences between the two groups (p<0.001 chi-square test). The neurologic recoveries, assessed by the ASIA scoring system, were not satisfactory for the neural deficit patients in either group, indicating there was no significant difference with regard to neurologic recovery between the two groups (p>0.05 Fisher''s exact test).

Conclusion

Intervertebral disc damage is a common characteristic in type B and C spinal fracture-dislocation injuries. The damaged intervertebral disc should be removed and substituted with a bone graft because reserving the damaged disc in situ increases the risk of treatment failure.  相似文献   

2.

Study design

A retrospective clinical study.

Objective

To evaluate the clinical efficacy of the surgical treatment of noncontiguous spinal tuberculosis (NSTB), and to discuss its therapeutic strategies.

Methods

We performed a retrospective review of clinical and radiographic data that were prospectively collected on 550 consecutive spinal tubercular patients including 27 patients who were diagnosed and treated as NSTB in our institution from June 2005 to June 2011. Apart from 4 patients being treated conservatively, the remainder received surgery by posterior transforaminal debridement, interbody fusion with instrumentation, posterior instrumentation and anterior debridement with fusion in a single or two-stage operation. The clinical outcomes were evaluated before and after treatment in terms of hematologic and radiographic examinations, bone fusion and neurologic status. The Oswestry Disability Index score was determined before treatment and at the last follow-up visit.

Results

23 patients (15 M/8F), averaged 44.6±14.2 years old (range, 19 to 70 yd), who received surgical treatment, were followed up after surgery for a mean of 52.5±19.5 months (range, 24 to 72 months). The kyphotic angle was changed significantly between pre- and postoperation (P<0.05). The mean amount of correction was 12.6±7.2 degrees, with a small loss of correction at last follow-up. All patients achieved solid bone fusion. No patients with neurological deficit deteriorated postoperatively. Neither mortalities nor any major complications were found. There was a significant difference of Oswestry Disability Index scores between preoperation and the final follow-up.

Conclusion

The outcomes of follow-up showed that posterior and posterior-anterior surgical treatment methods were both viable surgical options for NSTB. Posterior transforaminal debridement, interbody fusion and posterior instrumentation, as a less invasive technique, was feasible and effective to treat specific tubercular foci.  相似文献   

3.

Background

The mechanical response of the spinal cord during burst fracture was seldom quantitatively addressed and only few studies look into the internal strain of the white and grey matters within the spinal cord during thoracolumbar burst fracture (TLBF). The aim of the study is to investigate the mechanical response of the spinal cord during TLBF and correlate the percent canal compromise (PCC) with the strain in the spinal cord.

Methodology/Principal Findings

A three-dimensional (3D) finite element (FE) model of human T12-L1 spinal cord with visco-elastic property was generated based on the transverse sections images of spinal cord, and the model was validated against published literatures under static uniaxial tension and compression. With the validated model, a TLBF simulation was performed to compute the mechanical strain in the spinal cord with the PCC. Linear regressions between PCC and strain in the spinal cord show that at the initial stage, with the PCC at 20%, and 45%, the corresponding mechanical strains in ventral grey, dorsal grey, ventral white, dorsal white matters were 0.06, 0.04, 0.12, 0.06, and increased to 0.14, 0.12, 0.23, and 0.13, respectively. At the recoiled stage, when the PCC was decreased from 45% to 20%, the corresponding strains were reduced to 0.03, 0.02, 0.04 and 0.03. The strain was correlated well with PCC.

Conclusions/Significance

The simulation shows that the strain in the spinal cord correlated well with the PCC, and the mechanical strains in the ventral regions are higher than those in the dorsal regions of spinal cord tissue during burst fracture, suggesting that the ventral regions of the spinal cord may susceptible to injury than the dorsal regions.  相似文献   

4.

Purpose

This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study.

Methods

The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers.

Results

The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8–9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement.

Conclusions

According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.  相似文献   

5.

Background

Bilateral C1-2 transarticular screw and C1 laminar hook fixation was developed on the basis of transarticular screws fixation. The modified technique has showed a better biomechanical stability than established techniques in previous study. However, long-term (minimum follow-up 7 years) outcomes of patients with reducible atlantoaxial dislocation who underwent this modified fixation technique have not still been reported.

Methods

A retrospective study was conducted to evaluate the outcome of 36 patients who underwent this modified technique. Myelopathy was assessed using the Ranawat myelopathy score and Myelopathy Disability Index. Pain scores were assessed using Visual Analogue Scale. Radiological imaging was assessed and the following data were extracted: the atlantodental intervals, the space available for cord, presence of spinal cord signal change on T2 weighted image, C1–C2 angle, C2–C7 angle and fusion rates.

Findings

All patients achieved a minimum seven-year follow up. 95% patients with neck and suboccipital pain improved after surgery; in their Visual Analogue pain scores, there was a greater than 50% improvement in their VAS scores with a drop of 5 points on the VAS (P<0.05). 92% of patients improved in the Ranawat myelopathy grade; the Myelopathy Disability Index assessment showed a preoperative mean score of 35.62 with postoperative mean 12.75(P<0.05). There was not any significant atlantoaxial instability at each follow-up time. The space available for cord increased in all patients. Postoperative sagittal kyphosis of the subaxial spine was not observed. After six months after surgery, bone grafts of all patients were fused. No complications related to surgery were found in the period of follow-up.

Conclusions

The long-term outcomes of this case series demonstrate that under the condition of thorough preoperative preparations, bilateral C1–C2 transarticular screw and C1 laminar hook fixation and bone graft fusion is a reliable posterior atlantoaxial fusion technique for reducible atlantoaxial dislocation.  相似文献   

6.

Study Design

Meta-analysis.

Background

Bilateral pedicle screw fixation (PS) after lumbar interbody fusion is a widely accepted method of managing various spinal diseases. Recently, unilateral PS fixation has been reported as effective as bilateral PS fixation. This meta-analysis aimed to comparatively assess the efficacy and safety of unilateral PS fixation and bilateral PS fixation in the minimally invasive (MIS) lumbar interbody fusion for one-level degenerative lumbar spine disease.

Methods

MEDLINE/PubMed, EMBASE, BIOSIS Previews, and Cochrane Library were searched through March 30, 2014. Randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on unilateral versus bilateral PS fixation in MIS lumbar interbody fusion that met the inclusion criteria and the methodological quality standard were retrieved and reviewed. Data on participant characteristics, interventions, follow-up period, and outcomes were extracted from the included studies and analyzed by Review Manager 5.2.

Results

Six studies (5 RCTs and 1 CCT) involving 298 patients were selected. There were no significant differences between unilateral and bilateral PS fixation procedures in fusion rate, complications, visual analogue score (VAS) for leg pain, VAS for back pain, Oswestry disability index (ODI). Both fixation procedures had similar length of hospital stay (MD = 0.38, 95% CI = −0.83 to 1.58; P = 0.54). In contrast, bilateral PS fixation was associated with significantly more intra-operative blood loss (P = 0.002) and significantly longer operation time (P = 0.02) as compared with unilateral PS fixation.

Conclusions

Unilateral PS fixation appears as effective and safe as bilateral PS fixation in MIS lumbar interbody fusion but requires less operative time and causes less blood loss, thus offering a simple alternative approach for one-level lumbar degenerative disease.  相似文献   

7.

Objective

To report the outcomes of a posterior hybrid decompression protocol for the treatment of cervical spondylotic myelopathy (CSM) associated with hypertrophic ligamentum flavum (HLF).

Background

Laminoplasty is widely used in patients with CSM; however, for CSM patients with HLF, traditional laminoplasty does not include resection of a pathological ligamentum flavum.

Methods

This study retrospectively reviewed 116 CSM patients with HLF who underwent hybrid decompression with a minimum of 12 months of follow-up. The procedure consisted of reconstruction of the C4 and C6 laminae using CENTERPIECE plates with spinous process autografts, and resection of the C3, C5, and C7 laminae. Surgical outcomes were assessed using Japanese Orthopedic Association (JOA) score, recovery rate, cervical lordotic angle, cervical range of motion, spinal canal sagittal diameter, bone healing rates on both the hinge and open sides, dural sac expansion at the level of maximum compression, drift-back distance of the spinal cord, and postoperative neck pain assessed by visual analog scale.

Results

No hardware failure or restenosis was noted. Postoperative JOA score improved significantly, with a mean recovery rate of 65.3±15.5%. Mean cervical lordotic angle had decreased 4.9 degrees by 1 year after surgery (P<0.05). Preservation of cervical range of motion was satisfactory postoperatively. Bone healing rates 6 months after surgery were 100% on the hinge side and 92.2% on the open side. Satisfactory decompression was demonstrated by a significantly increased sagittal canal diameter and cross-sectional area of the dural sac together with a significant drift-back distance of the spinal cord. The dural sac was also adequately expanded at the time of the final follow-up visit.

Conclusion

Hybrid laminectomy and autograft laminoplasty decompression using Centerpiece plates may facilitate bone healing and produce a comparatively satisfactory prognosis for CSM patients with HLF.  相似文献   

8.

Background

Mechanism of ossification of the posterior longitudinal ligament (OPLL) has not been elucidated clearly. Surgical decompression is usually necessary for the patients with neurological symptoms. Anterior decompression and resection of OPLL seems to be a radical surgical option, because the spinal cord is compressed from the anterior direction.

Methods

Among 229 patients who underwent ACF for OPLL between January 2001 and December 2007 in our hospital, a total of 133 patients responded to the invitation and made return visits, with a follow-up rate of 58.1%. For these patients, clinical data were collected from medical and operative records. Neurological status were evaluated by using the Japanese Orthopedic Association (JOA) scoring system. Radiological evaluations including C2-7 lordotic angle, sagittal vertical axis (SVA), occupying rate of OPLL, double-layer sign and high-intensity zone were obtained from all the patients. Complications and causes of revision surgery were also investigated. Correlations between the long-term surgical outcome and various prognostic factors were statistically analyzed.

Findings

Eighty-four males and forty-nine females completed the follow-up, with a mean age at operation of 56.8 years. The overall average JOA score significantly increased, with a mean recovery rate of 64.1%±14.2%. The mean C2-7 lordotic angle and SVA were also significantly improved, and fusion rate was satisfactory. The incidence of complications was consistent to the previous reports and most of them were controllable by suitable treatments. Multiple regression analysis showed that number of corpectmies and preoperative JOA score were important predictors of surgical outcome.

Conclusions

ACF is a reliable and effective method for treating OPLL patients in terms of neurological recovery, maintenance of radiological parameters, fusion rate and complications. Number of corpectomies and preoperative JOA score are important predictors for the clinical outcome when this procedure is used.  相似文献   

9.

Background

Spinal cord injuries are highly disabling and deadly injuries. Currently, few studies focus on non-traumatic spinal cord injuries, and there is little information regarding the risk factors for complete injuries. This study aims to describe the demographics and the injury characteristics for both traumatic and non-traumatic spinal cord injuries and to explore the risk factors for complete spinal cord injuries.

Methods

A retrospective study was performed by reviewing the medical records of 3,832 patients with spinal cord injuries who were first admitted to the sampled hospitals in Guangdong, China. The demographics and injury characteristics of the patients were described and compared between the different groups using the chi-square test. Logistic regression was conducted to analyze the risk factors for complete spinal cord injuries.

Results

The proportion of patients increased from 7.0% to 14.0% from 2003 to 2011. The male-to-female ratio was 3.0∶1. The major cause of spinal cord injuries was traffic accidents (21.7%). Many of the injured were workers (36.2%), peasants (22.8%), and unemployed people (13.9%); these occupations accounted for 72.9% of the total sample. A multivariate logistic regression model revealed that the OR (95% CI) for male gender compared to female gender was 1.25 (1.07–1.89), the OR (95%CI) for having a spinal fracture was 1.56 (1.35–2.60), the OR (95%CI) for having a thoracic injury was 1.23 (1.10–2.00), and the OR (95%CI) for having complications was 2.47 (1.96–3.13).

Conclusion

The proportion of males was higher than the proportion of females. Workers, peasants and the unemployed comprised the high-risk occupational categories. Male gender, having a spinal fracture, having a thoracic injury, and having complications were the major risk factors for a complete injury. We recommend that preventive measures should focus on high-risk populations, such as young males.  相似文献   

10.

Background

The use of early decompression in the management of acute spinal cord injury (SCI) remains contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by uncertainties regarding overall treatment efficacy and timing of decompression.

Methods

We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design characteristics assessed with meta-regression.

Results

Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I2=94%, p<0.001). Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a number of factors affecting outcome, notably compressive pressure and duration (adjusted r2=0.204, p<0.002), with increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces accompanying canal narrowing resulted in paresis over many hours.

Conclusion

These data suggest early decompression improves neurobehavioural deficits in animal models of SCI. Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The close relationship of compressive pressure to the rate of development of severe neurological injury suggests that pressure local to the site of injury might be a useful parameter determining the urgency of decompression.  相似文献   

11.

Background

To compare the efficacy of the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) by Meta-analysis.

Methods

Studies of the BBB scores after intravenous transplantation of BMSCs were searched out from Pubmed, SCI, Cochrane Library, Chinese journal full-text database, China Biology Medicinedisc and Wanfang data-base and analyzed by Review Manager 5.2.5.

Results

Nine randomized controlled animal trials were selected with 235 rats enrolled. The studies are divided to different subgroups by different models of SCI and different time to transplantion. The results of Meta-analysis in different subgroups both indicated that the rats of experimental group (BMSCs group) got better BBB scores than control group at 1, 3 and over 5 weeks after intravenous transplantation of BMSCs with significant differences. The heterogeneity between impacted injury model and oppressed injury model subgroups decreased with the passage of time (I2 = 75.8%, 39.7%, 0%). No heterogeneity was found between 3 d and 7 d subgroups.

Conclusion

The intravenous transplantation of BMSCs is an efficient way to cure spinal cord injury, which can improve the motor function of rats. The therapeutic window is wide.  相似文献   

12.

Purpose

Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system.

Methods

A L3–S1 FE model was modified to simulate decompression and fusion at L4–L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes.

Results

All reconstructive conditions displayed decreased motion at L4–L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems.

Conclusions

Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.  相似文献   

13.

Study Design

A comparable retrospective study.

Object

To compare the clinical outcomes of surgical treatment by posterior only and anterior video-assisted thoracoscopic surgery for thoracic spinal tuberculosis (TSTB).

Method

145 patients with TSTB treated by two different surgical procedures in our institution from June 2001 to June 2014 were studied. All cases were retrospectively analyzed and divided into two groups according to the given treatments: 75 cases (32F/43M) in group A performed single-stage posterior debridement, transforaminal thoracic interbody fusion and instrumentation, and 70 cases (30F/40M) in group B underwent anterior video-assisted thoracoscopic surgery (VATS). Clinical and radiographic results in the two groups were analyzed and compared.

Results

Patients in group A and B were followed up for an average of 4.6±1.8, 4.4±1.2 years, respectively. There was no statistically significant difference between groups in terms of the operation time, blood loss, bony fusion, neurological recovery and the correction angle of kyphotic deformity (P>0.05). Fewer pulmonary complications were observed in group A. Good clinical outcomes were achieved in both groups.

Conclusions

Both the anterior VATS and posterior approaches can effectively treat thoracic tuberculosis. Nevertheless, the posterior approach procedure obtained less morbidity and complications than the other.  相似文献   

14.

Study Strategy

A retrospective clinic study.

Purpose

To evaluate the efficacy of conservative and surgical treatment for lumbosacral tuberculosis.

Methods

This study retrospectively reviewed 53 patients with lumbosacral tuberculosis who were treated in our institution between January 2005 and January 2011. There were 29 males and 24 females with average ages of 37.53 ± 17.28 years (range 6–72 years). 11 patients were given only anti-TB drugs; the remainder underwent anterior debridement, interbody fusion with and without instrumentation, or one-stage anterior debridement combined with posterior instrumentation. Outcome data for these patients included neurologic status, lumbosacral angle, erythrocyte sedimentation rate value(ESR) and C-reactive protein value(CRP) were assessed before and after treatment.

Results

The mean lumbosacral angles were 23.00°± 2.90°in the conservatively treated patients and 22.36°± 3.92o in the surgically treated patients. At the final follow-up, this had improved to 24.10o ± 2.96°in the conservatively treated patients and 28.13° ± 1.93°in the surgically treated patients (all P < 0.05). There were statistically significant differences before and after treatment in terms of ESR and CRP (all P < 0.05). All patients achieved bone fusion. The mean follow-up period was 32.34 ± 8.13 months (range 18 to 55 months). The neurological deficit did not worsen in any of the patients.

Conclusions

It has been proven that conservative and surgical treatments are safe and effective and produce good clinical outcomes for patients with lumbosacral tuberculosis. The advantages of operation include thoroughness of debridement, decompression of the spinal cord, and adequate spinal stabilization.  相似文献   

15.

Background

Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the nervous system. The present study was undertaken to study the effects of exogenous H2S on ischemia/reperfusion (I/R) injury of spinal cord and the underlying mechanisms.

Methods

The effects of exogenous H2S on I/R injury were examined by using assessment of hind motor function, spinal cord infarct zone by Triphenyltetrazolium chloride (TTC) staining. Autophagy was evaluated by expressions of Microtubule associated protein 1 light chain 3 (LC3) and Beclin-1 which were determined by using Quantitative Real-Time PCR and Western blotting, respectively.

Results

Compared to I/R injury groups, H2S pretreatment had reduced spinal cord infarct zone, improved hind motor function in rats. Quantitative Real-Time PCR or Western blotting results showed that H2S pretreatment also downregulated miR-30c expression and upregulated Beclin-1 and LC3II expression in spinal cord. In vitro, miR-30c was showed to exert negative effect on Beclin-1 expression by targeting its 3’UTR in SY-SH-5Y cells treated with Oxygen, Glucose Deprivation (OGD). In rat model of I/R injury, pretreatment of pre-miR-30c or 3-MA (an inhibitor for autophagy) can abrogated spinal cord protective effect of H2S.

Conclusion

H2S protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord hemia-reperfusion injury.  相似文献   

16.

Objective

Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs).

Methods

To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells.

Results

We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane.

Significance

Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.  相似文献   

17.

Background

A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown.

Methods

Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury.

Results

The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury.

Conclusion

Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.  相似文献   

18.

Background

There is convincing preclinical evidence that early decompression in the setting of spinal cord injury (SCI) improves neurologic outcomes. However, the effect of early surgical decompression in patients with acute SCI remains uncertain. Our objective was to evaluate the relative effectiveness of early (<24 hours after injury) versus late (≥24 hours after injury) decompressive surgery after traumatic cervical SCI.

Methods

We performed a multicenter, international, prospective cohort study (Surgical Timing in Acute Spinal Cord Injury Study: STASCIS) in adults aged 16–80 with cervical SCI. Enrolment occurred between 2002 and 2009 at 6 North American centers. The primary outcome was ordinal change in ASIA Impairment Scale (AIS) grade at 6 months follow-up. Secondary outcomes included assessments of complications rates and mortality.

Findings

A total of 313 patients with acute cervical SCI were enrolled. Of these, 182 underwent early surgery, at a mean of 14.2(±5.4) hours, with the remaining 131 having late surgery, at a mean of 48.3(±29.3) hours. Of the 222 patients with follow-up available at 6 months post injury, 19.8% of patients undergoing early surgery showed a ≥2 grade improvement in AIS compared to 8.8% in the late decompression group (OR = 2.57, 95% CI:1.11,5.97). In the multivariate analysis, adjusted for preoperative neurological status and steroid administration, the odds of at least a 2 grade AIS improvement were 2.8 times higher amongst those who underwent early surgery as compared to those who underwent late surgery (OR = 2.83, 95% CI:1.10,7.28). During the 30 day post injury period, there was 1 mortality in both of the surgical groups. Complications occurred in 24.2% of early surgery patients and 30.5% of late surgery patients (p = 0.21).

Conclusion

Decompression prior to 24 hours after SCI can be performed safely and is associated with improved neurologic outcome, defined as at least a 2 grade AIS improvement at 6 months follow-up.  相似文献   

19.

Introduction

Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance.

Methods

To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins.

Results

Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism.

Conclusions

Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance.  相似文献   

20.

Background

Traumatic spinal cord injury (SCI) leads to disruption of axons and macroscopic tissue loss. Using diffusion tensor imaging (DTI), we assessed degeneration of the corticospinal tract (CST) in the cervical cord above a traumatic lesion and explored its relationship with cervical atrophy, remote axonal changes within the cranial CST and upper limb function.

Methods

Nine cervical injured volunteers with bilateral motor and sensory impairment and ten controls were studied. DTI of the cervical cord and brain provided measurements of fractional anisotropy (FA), while anatomical MRI assessed cross-sectional spinal cord area (i.e. cord atrophy). Spinal and central regions of interest (ROI) included the bilateral CST in the cervical cord and brain. Regression analysis identified correlations between spinal FA and cranial FA in the CST and disability.

Results

In individuals with SCI, FA was significantly lower in both CSTs throughout the cervical cord and brain when compared with controls (p≤0.05). Reduced FA of the cervical cord in patients with SCI was associated with smaller cord area (p = 0.002) and a lower FA of the cranial CST at the internal capsule level (p = 0.001). Lower FA in the cervical CST also correlated with impaired upper limb function, independent of cord area (p = 0.03).

Conclusion

Axonal degeneration of the CST in the atrophic cervical cord, proximal to the site of injury, parallels cranial CST degeneration and is associated with disability. This DTI protocol can be used in longitudinal assessment of microstructural changes immediately following injury and may be utilised to predict progression and monitor interventions aimed at promoting spinal cord repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号