首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

2.
Six adult and three juvenile honey buzzards Pernis apivorus were radio-tracked by satellite during autumn migration from southwestern Sweden. All adults crossed the Mediterranean Sea at the Strait of Gibraltar and continued across the Sahara desert to winter in West Africa, from Sierra Leone to Cameroon. Analysing three main steps of the migration, (1) from the breeding site to the southern Mediterranean region, (2) across the Sahara and (3) from the southern Sahara to the wintering sites, the adults changed direction significantly between these steps, and migrated along a distinct large-scale detour. In contrast, the juveniles travelled in more southerly directions, crossed the Mediterranean Sea at various places, but still ended up in the same wintering areas as the adults. Average speeds maintained on travelling days were similar for the two age groups, about 170 km/day in Europe, 270 km/day across Sahara and 125 km/day in Africa south of Sahara. However, as the adults used fewer stopover days en route, they maintained higher mean overall speeds and completed migration in a shorter time (42 days) than the juveniles (64 days). Although the juveniles set out on more direct courses towards the wintering grounds, they did not cover significantly shorter distances than the adults, as they tended to show a larger directional scatter between shorter flight segments. The results corroborate previous suggestions that adult and juvenile honey buzzards follow different routes during autumn migration, and that the birds change migration strategy during their lifetime. While juveniles may use individual vector orientation, social influences and learning may be of great importance for the detour migration of adults. The remarkable and distinct age-dependent shift in migratory route and orientation of the honey buzzard provides a challenging evolutionary problem.  相似文献   

3.
Eleonora's falcon (Falco eleonorae) is a rare raptor species that delays its breeding period until late summer to feed its young with passerines at the peak of autumn migration. Since the 1950s, this slender winged falcon has been believed to migrate along a historical route via the Red Sea to its main wintering area in Madagascar. In our study, we used satellite telemetry to investigate the real migration route of Eleonora's falcons and found that the species displayed a highly individual migration pattern. Furthermore, juvenile falcons migrated via West Africa to Madagascar and two juveniles could be tracked during spring migration and to their summering areas in East and West Africa. As juveniles migrated independently of adults, we discuss inherited navigation strategies forming part of a complex navigation system. We propose the idea of an orientation mechanism that naive falcons could apply during their long-distance migration towards their faraway wintering area located in the open ocean.  相似文献   

4.
5.
Many northerly breeding shorebird species show a separation in timing of adult and juvenile migration. If, in addition to genetic control of migration, learning from experienced conspecifics is advantageous, juveniles should join adult birds during their first fall migration when possible. We here present a method to test if juveniles mix with adults during the period of overlap during southward migration, using dunlin Calidris alpina migrating over southern Sweden as an example. While taking timing differences between age classes into account, we compare flock compositions observed in the field against randomized flock‐compositions based on the pool of available individuals derived from the field data. During both the early, the adult‐dominated, and later, the juvenile‐dominated, part of the season, age classes segregate. Applied to other shorebird species, our method could be used in a comparative sense to evaluate the potential for social learning of migration routes.  相似文献   

6.
Adult passerines renew their flight feathers at least once every year. This complete moult occurs either in the breeding areas, just after breeding (summer moult), or, in some long-distance migratory species, at the non-breeding areas, after arrival to the southern wintering area at the end of autumn migration (winter moult). The aim of this study was to relate moult strategies with the DMD, the difference in median migration date, through Israel, between juveniles and adults. Our data on autumn migration timing in juveniles and adults was based on ringing data of 49,125 individuals belonging to 23 passerine species that breed in Europe and Western Asia and migrate through Israel. We found that DMD was associated with moult timing. In all species that perform a winter moult, adults preceded juveniles during autumn. Among migrants who perform a summer moult, we found evidence of both migration timing patterns: juveniles preceding adults or adults preceding juveniles. In addition, in summer moulters, we found a significant, positive correlation between mean breeding latitude and DMD. Although previous studies described that moult duration and extent can be affected by migration, we suggest that moult strategies affect both migration timing and migration strategy. These two moult strategies (summer or winter moult) also represent two unique migration strategies. Our findings highlight the evolutionary interplay between moult and migration strategies.  相似文献   

7.
Large increases in several populations of North American arctic geese have resulted in ecosystem-level effects from associated herbivory. Consequently, some breeding populations have shown density dependence in recruitment through declines in food availability. Differences in population trajectories of lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) and Ross's geese (C. rossii) breeding in mixed-species colonies south of Queen Maud Gulf (QMG), in Canada's central arctic, suggest that density dependence may be limiting snow goose populations. Specifically, long-term declines in age ratios (immature:adult) of harvested snow geese may have resulted from declines in juvenile survival. Thus, we focused on juvenile (first-year) survival of snow and Ross's geese in relation to timing of reproduction (annual mean nest initiation date) and late summer weather. We banded Ross's and snow geese from 1991 to 2008 in the QMG Migratory Bird Sanctuary. We used age-structured mark-recapture models to estimate annual survival rates for adults and juveniles from recoveries of dead birds. Consistent with life history differences, juvenile snow geese survived at rates higher than juvenile Ross's geese. Juvenile survival of both species also was lower in late seasons, but was unrelated to arctic weather measured during a 17-day period after banding. We found no evidence of density dependence (i.e., a decline in juvenile survival over time) in either species. We also found no interspecific differences in age-specific hunting vulnerability, though juveniles were more vulnerable than adults in both species, as expected. Thus, interspecific differences in survival were unrelated to harvest. Lower survival of juvenile Ross's geese may result from natural migration mortality related to smaller body size (e.g., greater susceptibility to inclement weather or predation) compared to juvenile snow geese. Despite lower first-year survival, recruitment by Ross's geese may still be greater than that by snow geese because of earlier sexual maturity, greater breeding propensity, and higher nest success by Ross's geese. © 2012 The Wildlife Society.  相似文献   

8.
Autumn migration routes and orientation of Swedish Ospreys Pandion haliaetus were studied by satellite tracking of 18 birds. Of these, 13 could be followed during the entire migration (6 females, 5 males and 2 juveniles). Most birds migrated across western and central Europe to winter in tropical West Africa. However, one juvenile flew to Cameroon and one female used a very easterly route and reached Mozambique. On average, the birds travelled a total distance of about 6700 km, with little variation except for the female wintering in Mozambique, who travelled more than 10 000 km. Of 21 stopovers (of >1 day), only five were made south of 45°N; three of these in Africa. Females departed before males and juveniles and flew to a stopover site they probably were familiar with. After 3–4 weeks there, they continued to their wintering grounds. Also males and juveniles usually made one or more stopovers. Adults seemed to travel to a known wintering site, where they remained stationary, whereas juveniles were more mobile after reaching tropical regions, probably looking for good wintering sites. Males generally left the breeding area in directions similar to the mean migratory direction, whereas a few females departed in diverging initial directions. Apart from these diversions, adult Ospreys followed very straight migratory routes, with overall mean directions of 185–209° and with mean angular deviations of 6–33°. Some juveniles also departed in diverging directions. Moreover, young birds tended to show a larger variability in orientation. Thus, the Ospreys kept a fairly straight direction and did not avoid geographical obstacles such as mountain ranges and desert areas. However, they seemed reluctant to cross large water bodies. There was no correlation between angular deviation and length of the migrational segment, indicating that the principles of orientation by vector summation may not be valid for Osprey migration. Moreover, the geographic direction of migration did not vary in accordance with variations in the magnetic declination, suggesting that the Ospreys did not orient along magnetic loxodromes.  相似文献   

9.
In many Palaearctic wader species there is a clear separation in the timing of adult and juvenile southward migration. This phenomenon is traditionally explained by the selection on adults to depart early from breeding grounds and necessity of juveniles to prepare longer for migration. In this study we hypothesize that late departure from natal grounds may also be adaptive for juveniles, as it allows them to avoid intensified interference competition at stopover sites with adult, usually more dominant conspecifics. To test this hypothesis we analysed long-term data on stopover behaviour of juvenile wood sandpipers (Tringa glareola) staying at a central Polish stopover site under varying levels of competition from adult birds. The results clearly indicated that juveniles were highly disadvantaged by the simultaneous presence of adults at the same staging site, as under intense competition from older conspecifics they refuelled more slowly and attained lower fat reserves. It was also found that juveniles which were forced to compete with adults left the site quickly and possibly searched for more favourable staging places. All these imply that delayed departure from natal grounds may be adaptive for juvenile waders, allowing them to mismatch the timing of their first migration with the peak of adult passage and, thus, reduce the negative consequences of intraspecific competition during migration.  相似文献   

10.
Many populations of long‐distance migrants are declining and there is increasing evidence that declines may be caused by factors operating outside the breeding season. Among the four vulture species breeding in the western Palaearctic, the species showing the steepest population decline, the Egyptian Vulture Neophron percnopterus, is a long‐distance migrant wintering in Africa. However, the flyways and wintering areas of the species are only known for some populations, and without knowledge of where mortality occurs, effective conservation management is not possible. We tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species. Mortality during the first autumn migration was high (monthly survival probability 0.75) but mortality during migration was exclusively associated with suboptimal navigation. All birds from western breeding areas and three birds from central and eastern breeding areas attempted to fly south over the Mediterranean Sea, but only one in 10 birds survived this route, probably due to stronger tailwind. All eight birds using the migratory route via Turkey and the Middle East successfully completed their first autumn migration. Of 14 individual and environmental variables examined to explain why juvenile birds did or did not successfully complete their first migration, the natal origin of the bird was the most influential. We speculate that in a declining population with fewer experienced adults, an increasing proportion of juvenile birds are forced to migrate without conspecific guidance, leading to high mortality as a consequence of following sub‐optimal migratory routes. Juvenile Egyptian Vultures wintered across a vast range of the Sahel and eastern Africa, and had large movement ranges with core use areas at intermediate elevations in savannah, cropland or desert. Two birds were shot in Africa, where several significant threats exist for vultures at continental scales. Given the broad distribution of the birds and threats, effective conservation in Africa will be challenging and will require long‐term investment. We recommend that in the short term, more efficient conservation could target narrow migration corridors in southern Turkey and the Middle East, and known congregation sites in African wintering areas.  相似文献   

11.
Birds experience a sequence of critical events during their life cycle, and past events can subsequently determine future performance via carry‐over effects. Events during the non‐breeding season may influence breeding season phenology or productivity. Less is understood about how events during the breeding season affect individuals subsequently in their life cycle. Using stable carbon isotopes, we examined carry‐over effects throughout the annual cycle of prairie warblers (Setophaga discolor), a declining Nearctic–Neotropical migratory passerine bird. In drier winters, juvenile males that hatched earlier at our study site in Massachusetts, USA, occupied wetter, better‐quality winter habitat in the Caribbean, as indicated by depleted carbon isotope signatures. For juveniles that were sampled again as adults, repeatability in isotope signatures indicated similar winter habitat occupancy across years. Thus, hatching date of juvenile males appears to influence lifetime winter habitat occupancy. For adult males, reproductive success did not carry over to influence winter habitat occupancy. We did not find temporally consecutive “domino” effects across the annual cycle (breeding to wintering to breeding) or interseasonal, intergenerational effects. Our finding that a male''s hatching date can have a lasting effect on winter habitat occupancy represents an important contribution to our understanding of seasonal interactions in migratory birds.  相似文献   

12.
The African Odyssey project focuses on studying the migration of the black stork Ciconia nigra breeding at a migratory divide. In 1995–2001, a total of 18 black storks breeding in the Czech Republic were equipped with satellite (PTT) and VHF transmitters. Of them, 11 birds were tracked during at least one migration season and three birds were tracked repeatedly. The birds migrated either across western or eastern Europe to spend the winter in tropical west or east Africa, respectively. One of the juveniles made an intermediate route through Italy where it was shot during the first autumn migration. The mean distance of autumn migration was 6,227 km. The eastern route was significantly longer than the western one (7,000 km and 5,667 km respectively). Important stopover sites were discovered in Africa and Israel. Wintering areas were found from Mauritania and Sierra Leone in the west to Ethiopia and Central African Republic in the east and south. One of the storks migrating by the eastern migration route surprisingly reached western Africa. Birds that arrived early in the wintering areas stayed longer than those arriving later. On the average, birds migrating via the western route spent 37 d on migration compared to 80 d for birds migrating via the eastern route. The mean migration speed in the autumn was 126 km/d and the fastest stork flew 488 km/d when crossing the Sahara. The repeatedly tracked storks showed high winter site fidelity.  相似文献   

13.
Populations of most North American aerial insectivores have undergone steep population declines over the past 40 years but the relative importance of factors operating on breeding, wintering, or stopover sites remains unknown. We used archival light-level geolocators to track the phenology, movements and winter locations of barn swallows (Hirdundo rustica; n = 27) from populations across North America to determine their migratory connectivity. We identified an east-west continental migratory divide for barn swallows with birds from western regions (Washington State, USA (n = 8) and Saskatchewan, Canada (n = 5)) traveling shorter distances to wintering areas ranging from Oregon to northern Colombia than eastern populations (Ontario (n = 3) and New Brunswick (n = 10), Canada) which wintered in South America south of the Amazon basin. A single swallow from a stable population in Alabama shared a similar migration route to eastern barn swallows but wintered farther north in northeast Brazil indicating a potential leap frog pattern migratory among eastern birds. Six of 9 (67%) birds from the two eastern populations and Alabama underwent a loop migration west of fall migration routes including around the Gulf of Mexico travelling a mean of 2,224 km and 722 km longer on spring migration, respectively. Longer migration distances, including the requirement to cross the Caribbean Sea and Gulf of Mexico and subsequent shorter sedentary wintering periods, may exacerbate declines for populations breeding in northeastern North America.  相似文献   

14.
Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu''s harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.  相似文献   

15.
ABSTRACT Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.  相似文献   

16.
Seasonal long-distance migration is likely to be experienced in a contrasted manner by juvenile, immature and adult birds, leading to variations in migratory routes, timing and behaviour. We provide the first analysis of late summer movements and autumn migration in these three life stages, which were tracked concurrently using satellite tags, geolocators or GPS recorders in a long-ranging migratory seabird, the Scopoli’s shearwater (formerly named Cory’s shearwater, Calonectris diomedea ) breeding on two French Mediterranean islands. During the late breeding season, immatures foraged around their colony like breeding adults, but they were the only group showing potential prospecting movements around non-natal colonies. Global migration routes were broadly comparable between the two populations and the three life stages, with all individuals heading towards the Atlantic Ocean through the strait of Gibraltar and travelling along the West African coast, up to 8000 km from their colony. However, detailed comparison of timing, trajectory and oceanographic conditions experienced by the birds revealed remarkable age-related differences. Compared to adults and immatures, juveniles made a longer stop-over in the Balearic Sea (10 days vs 4 days in average), showed lower synchrony in crossing the Gibraltar strait, had more sinuous pathways and covered longer daily distances (240 km.d-1 vs 170 km.d-1). Analysis of oceanographic habitats along migratory routes revealed funnelling selection of habitat towards coastal and more productive waters with increasing age. Younger birds may have reduced navigational ability and learn progressively fine-scale migration routes towards the more profitable travelling and wintering areas. Our study demonstrates the importance of tracking long-lived species through the stages, to better understand migratory behavior and assess differential exposure to at-sea threats. Shared distribution between life stages and populations make Scopoli’s shearwaters particularly vulnerable to extreme mortality events in autumn and winter. Such knowledge is key for the conservation of critical marine habitats.  相似文献   

17.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

18.
Little is known about the wintering distribution of the European Nightjar Caprimulgus europaeus. We combined geolocator and GPS‐logger data from different sites in Western Europe to analyse migration routes and migration timing of this trans‐equatorial migrant. Nightjars followed a loop migration route during which they cross two ecological barriers, and converged near common stopover zones in Northern, Central and Western Africa, where they stayed for 2–3 weeks. Nightjars used the same stopover sites as several other European migrants, relying on small and discrete wintering areas within the Democratic Republic of Congo. This confirms the importance of these specific zones and highlights the vulnerability of Western European populations to habitat loss in their non‐breeding areas.  相似文献   

19.
Migratory species are of special concern in the face of global climate change, since they may be affected by changes in the wintering area, along the migration route and at the breeding grounds. Here we show that migration and breeding times of a trans‐Saharan migrant, the pied flycatcher Ficedula hypoleuca, closely follow local temperatures along the migration route and at the breeding grounds. Because of differences in long‐term temperature trends of short within‐spring periods, the migration period and the time interval between migration and breeding dates of this species have extended in SW Finland. Temperatures in northern parts of Central Europe have risen at the time when the first migrants arrive there, facilitating their migration northward. Temperatures later in the spring have not changed, and the last individuals arrive at the same time as before. The timing of breeding has not advanced because temperatures at the breeding site after arrival have not changed. These results show that the pied flycatchers can speed up their migration in response to rising temperatures along the migration route. Our results strongly indicate that the effects of climate change have to be studied at the appropriate time and geographical scales for each species and population concerned.  相似文献   

20.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号