首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective natural resource management requires knowledge exchange between researchers and managers to support evidence‐based decision‐making. To achieve this, there is a need to align research with management and policy needs. This project aimed to identify the flow‐related ecological knowledge needs for freshwater fish to better inform environmental water management in the Murray–Darling Basin, south‐eastern Australia. Our major objective was to provide an up‐to‐date assessment of scientific research and integrate this with the knowledge requirements of relevant managers to guide future research. We reviewed the contemporary scientific literature and engaged managers specifically responsible for delivering flows for fish outcomes via a questionnaire and workshop. Research on fishes of the MDB has generally evolved from single locations and/or times to larger spatio‐temporal scales, including multiple sites, rivers and catchments. There has also been a trend from single life stage studies to incorporation of multiple life stages and population processes. There remain, however, significant deficiencies in knowledge for most native species, many of which are threatened. Four agreed key knowledge gaps were derived from the literature review and managers’ suggestions: (i) population dynamics, (ii) movement, dispersal and connectivity, (iii) survival and recruitment to adults and (iv) recruitment drivers. To inform policy and management, managers desired timely advice, based on robust research and monitoring. Fish species of most relevance to managers were those highly regarded by community stakeholders and whose life histories and population dynamics are potentially influenced by flow. Populations of these mostly large‐bodied, angling species (e.g. Murray Cod, Golden Perch and Silver Perch) have declined, often due to river regulation and, in conjunction with managers’ priorities, are relevant candidates for research to support the management of flow to rehabilitate fish populations in the MDB.  相似文献   

2.
Flooding is often considered a stimulus for production of fish in floodplain rivers. In the southern Murray–Darling Basin (MDB), Australia, however, few native fish species have been shown to use the floodplain for spawning, and recruitment has been positively and negatively associated with flooding. In 2010/11, extensive flooding in the lower River Murray provided an opportunity to investigate the recruitment response of Golden Perch (Macquaria ambigua ambigua) following 10 years of drought and floodplain isolation. Annual variation in Golden Perch abundance and recruitment were investigated in anabranch and main channel habitats at Chowilla in the floodplain geomorphic region of the lower River Murray over a 7‐year period incorporating the flood and 6 years of in‐channel flow. Spatial variation in recruitment in the lower River Murray was also investigated by comparing the age structure of Golden Perch in the swamplands/lakes, gorge and floodplain geomorphic regions. Golden Perch abundance in the Chowilla region increased significantly postflooding compared with drought years. Age structures indicated that increased abundance was due predominantly to fish spawned during the flood (2010/11) and the previous year (2009/10), which was characterised by in‐channel flows. Age structure was similar in the nearby Katarapko Anabranch system indicating a uniform postflood recruitment response in the floodplain geomorphic region. Juvenile Golden Perch from the 2010/11 and 2009/10 cohorts were less apparent in the gorge and swamplands/lakes regions. Golden Perch have flexible life histories and will spawn and recruit in association with in‐channel rises in flow and overbank flows, but significant increases in abundance in the lower River Murray may result from overbank flooding. Contemporary approaches to flow restoration in the MDB emphasise overbank flows and floodplain processes. We suggest, however, that environmental flow management that incorporates floodplain and in‐channel processes, at appropriate spatio‐temporal scales, will result in more robust populations of Golden Perch.  相似文献   

3.
River management continues to challenge riparian systems worldwide, with climate change impacts and anthropogenic extractions escalating. The Murray–Darling basin (MDB) in Australia is critical to agricultural production and habitat provision to maintain biodiversity. Concern for the condition of native trees and biota in the MDB has led to substantial research investment to increase ecosystem function understanding and improve floodplain and wetland management. This field study offers new insights into tree nutrition and physiology as interpreted against the plant-soil-environment dynamics of recent flooding. Black Box (Eucalyptus largiflorens (Myrtaceae) is the only key native riverine MDB tree restricted to that region; and appears stressed at the far reaches of certain significant floodplain ecosystems. Here, nutritional and ecophysiological comparisons were made between Black Box trees that had just been inundated, and those nearby that had not. Leaf stomatal conductance, transpiration, total soil aluminium (Al) concentration, soil pH, and soil conductivity were different between inundated and dry sites. Soil moisture increased due to inundation, thus reducing tree water stress across the three study locations. Changes in leaf chemistry were not detected at the very early stages of flooding examined in this study. An increase in soil acidity due to inundation may also enhance bioavailability of nutrients to trees. New insight into immediate plant benefits gained from this study suggests further investigation is warranted to elucidate the influence of flood and drought on nutrient balance and how future wetland management can benefit from a more holistic understanding of plant-soil-environment dynamics.  相似文献   

4.
Summary With limited evidence linking Australia's Murray‐Darling Basin fish species and flooding, this study assessed annual variation in abundance and recruitment levels of a small‐bodied, threatened floodplain species, the Southern Pygmy Perch (Nannoperca australis), in floodplain habitats (creeks, lakes and wetlands) in the Barmah‐Millewa Forest, Murray River, Australia. Spring and summer sampling over a 5‐year period encompassed large hydrological variation, including 1 year of extended floodplain inundation which was largely driven by an environmental water release, and 2 years of severe regional drought. Recruitment and dispersal of Southern Pygmy Perch significantly increased during the floodplain inundation event compared with the other examined years. This study provides valuable support for an environmental water allocation benefiting a native species, and explores the link between flooding and its advantages to native fish. This suggests that the reduced flooding frequency and magnitude as a result of river regulation may well be a major contributing factor in the species’ decline in the Murray‐Darling Basin.  相似文献   

5.
The release of water from deep below the surface of large dams causes significant disturbance to water temperature regimes in downstream river channels with consequent impacts upon aquatic biota and river health. The Murray–Darling Basin (MDB) has a large number of dams, which are known to cause cold water pollution (CWP) in the downstream reaches of the impounded rivers. This study reviews the situation with regard to CWP in the MDB including the location, magnitude and extent of temperature suppression, the impacts upon fish, constraints and progress towards ameliorating the problem.  相似文献   

6.
The spangled perch Leiopotherapon unicolor is considered a rare vagrant in the southern Murray‐Darling Basin, Australia, due to its intolerance of the relatively cool water temperatures that prevail during winter months. This study details 1342 records of the species from 68 locations between 2010 and 2014 outside its accepted ‘core adult range’ following widespread flooding during 2010 and 2011. Although records of the species declined over 2013, L. unicolor remained resident in the southern Murray‐Darling Basin as of April 2014. The species persisted in several locations for three consecutive winters with recruitment documented at two sites. This study represents the first identification of the dispersal of large numbers of L. unicolor into the southern Murray‐Darling Basin, persistence beyond a single winter, and recruitment by the species in habitats south of its recognized ‘core adult range’. Targeted research would determine the potential for predicted environmental changes (artificially warmer drainage wetlands, climate change and greater floodplain connectivity) to facilitate longer term persistence and range expansion by the species in the southern Murray‐Darling Basin.  相似文献   

7.
The river red gum (Eucalyptus camaldulensis Dehnh.) inhabits riparian zones and associated floodplains throughout Australia. Following changes to hydrological regime due to river regulation and prolonged drought in south‐eastern Australia, river red gum populations within the Murray–Darling Basin have suffered substantial decline. To better understand the effect of drought on river red gum genetic diversity, we examined single nucleotide polymorphism (SNP) variation in 12 candidate genes among six red gum floodplain forest sites in Yanga National Park, which had experienced contrasting levels of drought and associated decline over an eight‐year period. We also examined genetic diversity using these markers in five additional river red gum populations from the Murray–Darling Basin to place genetic diversity results from Yanga in a regional context. Tree condition was significantly lower and mortality higher in the most drought affected sites; however, differences in overall genetic diversity and divergence were not detected among sites. No evidence of genetic adaptation in response to drought in this set of candidate genes was detected when differentiation at individual SNP loci was examined. While the overall condition of E. camaldulensis was strongly influenced by hydrological regime, our results suggest the evolutionary potential of floodplain forests in Yanga were not immediately impacted by population decline linked with drought and changes in hydrological regime. We propose that due to low genetic structure among populations in the region, genetic diversity of river red gums within the Murray–Darling Basin might be effectively conserved during periods of extended drought by protecting representative populations.  相似文献   

8.
Black Box (Eucalyptus largiflorens) is a dominant floodplain tree in the Murray–Darling Basin. In northern Victoria, the health of Black Box woodlands has declined as a consequence of river regulation and drought. This has raised concern about the long‐term survival of populations. Although tree health and regeneration of this species are entwined with flooding, there is limited knowledge of its response to environmental watering. This inhibits the effective implementation of management actions to secure the long‐term survival of floodplain Black Box populations. We investigated the effect of flooding history on Black Box tree health, population status and regeneration at 26 sites within the Murray Sunset National Park, Victoria. Sites were assessed under two flooding treatments: (1) ‘recently flooded’ (sites frequently flooded within the last 5 years and (2) ‘historically flooded’ (sites not flooded since 1993). Black Box populations in recently flooded sites had a greater range of life stages present and fewer dead trees, indicating a healthier and more sustainable population structure. In addition, trees were in better health with higher canopy condition and reproductive output (e.g. flowers and fruits), and the average tree diameter was greater than in historically flooded sites. Seedlings and saplings were present only at recently flooded sites, indicating that water availability and tree health are a strong determinant of regeneration in these landscapes. Flooding is an important factor in the sustainability of Black Box populations in this Victorian semi‐arid floodplain. A key recommendation is that managed flows should be implemented to target populations in poor condition. Although regular flooding is required to maintain or improve the health of Black Box populations, developing the optimum flow regime (timing, frequency and duration) to facilitate this outcome requires further investigation.  相似文献   

9.
Summary Large overbank flood events play an important role in maintaining large‐scale ecological processes and connectivity along and across the floodplains and between the rivers and their floodplains in the southern Murray‐Darling Basin. However, the regulation of rivers means that extensive overbank flooding can only occur in the rare circumstance of extreme flood events. Recent environmental water allocations have focussed on the largest floodplain blocks (‘icon’ sites) and a small set of specific values (e.g. colonial nesting waterbirds), as well as on trialling fine‐scale manipulation of infrastructure (e.g. pumping) to water relatively small areas. There has been no comprehensive systematic assessment of the entire floodplain and its wider set of flood‐dependent natural assets (such as ecosystems and species; herein referred to as ‘natural values’) to maximise the effectiveness of environmental water use and to catalogue values likely to be lost. This paper describes an assessment of some 220 000 ha found to support flood‐dependent natural values in Victoria. We mapped the geographic distribution and estimated components of the flooding requirements (natural flooding frequency, and maximum period without flooding and minimum duration of each flooding event before significant deterioration) for each natural value. Using an example of one stretch of the River Murray, we show how the resultant spatial data can be used with floodplain inundation modelling to compare the outcomes of real or planned environmental watering events; potentially providing tools for management agencies to conserve a wider range of floodplain values than is currently the case. That is, water managers and the public can see what ecosystems and threatened species are intended to be maintained by environmental watering and what values are intended to be abandoned across the whole floodplain, rather than just seeing the small subset of values and ‘icon’ sites that are intended to be maintained. Examples are provided to illustrate how information about the location, water requirements and extent covered by potential floods for specific values can be used to build adaptive watering strategies for areas as large as the whole floodplain.  相似文献   

10.
Summary For decades the floodplain forests of the River Murray have endured the effects of prolonged water stress. This has resulted in significant crown dieback and loss of condition. The Living Murray (TLM) initiative aims to restore the ecological health of six Icon Sites along the River. The two eucalypts River Red Gum (Eucalyptus camaldulensis) and Black Box (Eucalyptus largiflorens) that dominate the forests at five of the six Icon Sites are undergoing widespread decline. To enable effective management and restoration of these forests, we developed a standardised tree condition assessment method. Named the TLM tree condition assessment method, it utilises visual assessment of a range of tree crown variables (extent and density of the foliage in the crown, epicormic growth, new tip growth, reproductive activity, leaf die‐off, mistletoe infestation) and measurements of bark condition, diameter at breast height and dominance class. This article describes the TLM tree condition assessment method and assesses it for consistency between multiple observer teams after limited training. The level of observer agreement between six teams each comprised of two observers was assessed for seven of the ten variables. Intra‐class correlation was used to compare scores of 30 River Red Gum trees assessed on Gunbower Island on the River Murray. The level of agreement for all variables was statistically significant with six of seven variables having correlation coefficients over R = 0.5. The TLM tree condition assessment method was found to provide accurate estimates of a range of tree variables that can be used to determine tree condition. The TLM tree condition assessment method provides a valuable monitoring tool that can be used to assess management interventions, such as management flooding and silvicultural thinning.  相似文献   

11.
Distinguishing the relative influence of historic (i.e. natural) versus anthropogenic factors in metapopulation structure is an important but often overlooked step in management programs of threatened species. Biotas in freshwater wetlands and floodplains, such as those in the Murray–Darling Basin (MDB)—one of Australia’s most impacted ecosystems, are particularly susceptible to anthropogenic fragmentation. Here we present a comprehensive multilocus assessment of genetic variation in the threatened southern pygmy perch Nannoperca australis (578 individuals; 45 localities; microsatellite, allozyme and mitochondrial DNA datasets), an ecological specialist with low dispersal potential. We assess patterns of spatial structure and genetic diversity in populations spanning the highly fragmented MDB and test whether recent anthropogenic modification has disrupted range-wide connectivity. We detected strong and hierarchical population structure, very low genetic diversity and lack of contemporary gene flow across the MDB. In contrast, the apparent absence of pronounced or long-term phylogeographic structure suggests that observed population divergences generally do not reflect deeply historic natural fragmentation. Coalescent-based analyses supported this inference, revealing that divergence times between populations from the upper and lower MDB fall into the period of European settlement. It appears that the observed contemporary isolation of populations is partly explained by the severe modification of the MDB post-dating the onset of European settlement. Our integrated approach substantially improves the interpretation of how fragmentation impacts present-day biodiversity. It also provides novel contributions for risk-assessing management actions in the context of captive breeding and translocations of small freshwater fishes, a group of increasing global conservation concern.  相似文献   

12.
Systematic analysis of Pb, Sr and Nd isotopes of 32 fluvial clay samples (< 2 µm fraction) from many of the major tributaries of the vast (1.106 km2) Murray Darling Basin (MDB), located in semiarid southeastern Australia, displays similar isotopic values between some MDB clays and dust from several ice core samples from the EPICA Dome C in Antarctica. Close scrutiny of several ratios of the four Pb isotopes, and in particular 208Pb/207Pb versus 206Pb/207Pb, shows that several samples from the Darling-sub-basin of the MDB display similar values for the same isotopes for Dome C samples from different ages, and more particularly during wet phases in Australia [Marine Isotopic Stages 5e, 3 and 1]. The combination of Nd and Sr isotopic ratios from the same MDB fluvial clays clearly eliminates the Murray sub-basin, and supports the Darling sub-basin as a potential source of aeolian material to Antarctica. Overall, the Australian dust supply to Antarctica predominantly occurred during interglacial periods.The work presented here shows that aerosols generated in southeastern Australia can travel to parts of West Antarctica and this is supported by atmospheric observations and models. In addition, evidence of Australian dust in Antarctic ice cores further implies dust deposition in the Southern Ocean would have occurred in the past. Current meteorological observations also imply that the western Pacific and Indian Ocean sector of the Southern Ocean would frequently receive aeolian dust components originating from southeastern Australia.  相似文献   

13.
Summary The impact of water diversion on fish populations is a global issue. Many countries have invested substantial funding into research and implementation strategies to ensure fish are protected at diversions that take water out of rivers for agriculture and other human uses. The most common management action is the installation of fish screens, and a wide range of designs are presently available that suit a large range of diversions. The Murray–Darling Basin is the largest catchment in Australia and has been substantially developed over the past 100 years to store and divert water for that protect fish from escaping into the irrigation systems. Recent studies have determined that water diversions have substantial impacts on native fish populations, but there are presently no coordinated efforts for mitigation strategies. The purpose of this review is to highlight aspects of successful screening programmes worldwide and identify those that could be directly applied to the Murray–Darling Basin. The development of similar programmes in the United States, New Zealand and the United Kingdom has identified that sufficient information and technology exists to inform the development of fish screening programmes. There is no need to commence implementation from first principles, and substantial progress can be achieved by applying successful aspects of other programmes. By identifying existing designs, defining ecological targets, developing generalised guidelines appropriate for local conditions and engaging the community, a co‐ordinated and successful fish screening programme could be directly applied to the Murray–Darling Basin. This would have substantial benefits for the long‐term sustainability of native fish without compromising water supply requirements.  相似文献   

14.
Clustering of multivariate data is a commonly used technique in ecology, and many approaches to clustering are available. The results from a clustering algorithm are uncertain, but few clustering approaches explicitly acknowledge this uncertainty. One exception is Bayesian mixture modelling, which treats all results probabilistically, and allows comparison of multiple plausible classifications of the same data set. We used this method, implemented in the AutoClass program, to classify catchments (watersheds) in the Murray Darling Basin (MDB), Australia, based on their physiographic characteristics (e.g. slope, rainfall, lithology). The most likely classification found nine classes of catchments. Members of each class were aggregated geographically within the MDB. Rainfall and slope were the two most important variables that defined classes. The second-most likely classification was very similar to the first, but had one fewer class. Increasing the nominal uncertainty of continuous data resulted in a most likely classification with five classes, which were again aggregated geographically. Membership probabilities suggested that a small number of cases could be members of either of two classes. Such cases were located on the edges of groups of catchments that belonged to one class, with a group belonging to the second-most likely class adjacent. A comparison of the Bayesian approach to a distance-based deterministic method showed that the Bayesian mixture model produced solutions that were more spatially cohesive and intuitively appealing. The probabilistic presentation of results from the Bayesian classification allows richer interpretation, including decisions on how to treat cases that are intermediate between two or more classes, and whether to consider more than one classification. The explicit consideration and presentation of uncertainty makes this approach useful for ecological investigations, where both data and expectations are often highly uncertain.  相似文献   

15.
Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah‐Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water‐birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray‐Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983–84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential.  相似文献   

16.
Aim To investigate the phylogeographic structure of the widespread freshwater prawn, Macrobrachium australiense, within and between major Australian drainage basins using mitochondrial sequence data. This will enable the investigation of historical connections between major drainages and examination of hypotheses of biogeographic associations among Australian freshwater basins. Location Inland, eastern and northern Australia. Methods Sequencing 16S rRNA and ATPase 6 protein coding mitochondrial DNA genes from M. australiense from 19 locations from inland, eastern and northern Australia. Results Within drainage basins, haplotype trees are monophyletic, with the exception of the Finke River from the Lake Eyre Basin. Macrobrachium australiense from the two main inland drainages, the Murray–Darling and Lake Eyre Basin are divergent from each other and do not form a monophyletic group, instead the Murray–Darling Basin haplotypes clade with eastern coastal haplotypes. Haplotypes from neighbouring eastern coastal drainages were found to be quite divergent from each other. Main conclusions The phylogeographic relationships among M. australiense suggest that the two major inland drainages, the Murray–Darling Basin and the Lake Eyre Basin, are not biogeographically closely associated to each other. Instead the Murray–Darling Basin is more closely allied with the eastern coastal drainages across the Great Dividing Range. Despite their proximity the neighbouring southeast Queensland coastal Mary and Brisbane Rivers are also biogeographically divergent from each other. The results also indicate that the Finke River appears to have been isolated from the remainder of the Lake Eyre Basin catchment for a significant period of time.  相似文献   

17.
Floodplain and riparian ecosystems have cooler, wetter microclimatic conditions, higher water availability and greater vegetation biomass than adjacent terrestrial zones. Given these conditions, we investigated whether floodplain ecosystems allow terrestrial bird species to extend into more arid regions than they otherwise would be expected to occupy. We evaluated associations between aridity and the occurrence of 130 species using bird survey data from 2998 sites along the two major river corridors in the Murray–Darling Basin, Australia. We compared the effects of aridity on species occurrence in non-floodplain and floodplain ecosystems to test whether floodplains moderate the effect of aridity. Aridity had a negative effect on the occurrence of 58 species (45%) in non-floodplain ecosystems, especially species dependent on forest and woodland habitats. Of these 58 species, the negative effects of aridity were moderated in floodplain ecosystems for 22 (38%) species: 12 showed no association with aridity in floodplain ecosystems and the adverse effects of aridity on species occurrence were less pronounced in floodplain ecosystems compared to non-floodplain ecosystems for ten species. Greater vegetation greenness indicated that floodplain vegetation was more productive than vegetation in non-floodplain ecosystems. Floodplain ecosystems allow many terrestrial species to occur in more arid regions than they otherwise would be expected to occupy. This may be due to higher vegetation productivity, cooler microclimates or connectivity of floodplain vegetation. Although floodplain and riparian ecosystems will become increasingly important for terrestrial species persistence as climate change increases drying in many parts of the world, many are also likely to be highly affected by reduced water availability.  相似文献   

18.
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray‐Darling Basin (MDB), Australia, using a genome‐wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype–environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.  相似文献   

19.
Understanding how species respond to differences in resource availability is critical to managing biodiversity under the increasing pressures associated with climate change and growing human populations. Over the last century, the floodplain forests of Australia's largest river system, the Murray‐Darling Basin, have been much affected by intensive harvesting of timber and firewood, and increasingly stressed by river regulation and, recently, an extended drought. Fallen timber – logs and shed branches – is known to play a key role in the ecology of several important species on these floodplains. Here, we monitored the response of the ant assemblages of a floodplain forest along the Murray River to a large‐scale (34 ha) experimental manipulation of fallen‐timber load (0 to 80 t ha?1) over 4 years. The forest was subjected to an incidental, extensive flood that enabled us to examine how two important stressors (timber removal and river regulation) affect ant assemblages. Ants showed little response to the proximity of fallen timber within plots, prior to the flood, or to different loads among plots, unlike other floodplain biota. After the flood, both ant abundance and species richness increased and species composition changed. However, this increase in species richness after flooding was less pronounced in plots with higher amounts of fallen timber. Managing river red gum forest using a mosaic of flood regimes, more representative of historical conditions, is likely to be the most effective way to maintain and enhance the diversity of ants and other biota on these important floodplains.  相似文献   

20.
The National Agricultural Productivity & Reconciliation Ecology Centre (NAPREC) held its inaugural conference in Deniliquin in the southern Murray–Darling Basin, NSW, Australia, 4–5 October 2017, and attracted an engaged group of farmers, researchers, industry and government representatives. The theme of the conference was ‘Positive Partnerships for Pathways to Sustainable Agriculture and Biodiversity’. It explored the application of Reconciliation Ecology and the value of the human elements of natural resource management within the context of the southern Murray–Darling Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号