共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo Zhang Xia Chen Fanghua Qiu Fengxin Zhu Wenjing Lei Jing Nie 《The Journal of biological chemistry》2014,289(33):23112-23122
Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity. 相似文献
2.
Jennifer L. Larson-Casey Shubha Murthy Alan J. Ryan A. Brent Carter 《The Journal of biological chemistry》2014,289(52):36204-36219
Protein kinase B (Akt) is a key effector of multiple cellular processes, including cell survival. Akt, a serine/threonine kinase, is known to increase cell survival by regulation of the intrinsic pathway for apoptosis. In this study, we found that Akt modulated the mevalonate pathway, which is also linked to cell survival, by increasing Rho GTPase activation. Akt modulated the pathway by phosphorylating mevalonate diphosphate decarboxylase (MDD) at Ser96. This phosphorylation in macrophages increased activation of Rac1, which enhanced macrophage survival because mutation of MDD (MDDS96A) induced apoptosis. Akt-mediated activation in macrophages was specific for Rac1 because Akt did not increase activity of other Rho GTP-binding proteins. The relationship between Akt and Rac1 was biologically relevant because Akt+/− mice had significantly less active Rac1 in alveolar macrophages, and macrophages from Akt+/− mice had an increase in active caspase-9 and -3. More importantly, Akt+/− mice were significantly protected from the development of pulmonary fibrosis, suggesting that macrophage survival is associated with the fibrotic phenotype. These observations for the first time suggest that Akt plays a critical role in the development and progression of pulmonary fibrosis by enhancing macrophage survival via modulation of the mevalonate pathway. 相似文献
3.
Francisco Llavero Bakarne Urzelai Nerea Osinalde Patricia Gálvez Hadriano M. Lacerda Luis A. Parada José L. Zugaza 《The Journal of biological chemistry》2015,290(14):9171-9182
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation. 相似文献
4.
Yoonju Kim Sang-Eun Lee Joohyun Park Minhyung Kim Boyoon Lee Daehee Hwang Sunghoe Chang 《The Journal of biological chemistry》2015,290(12):7323-7335
Recent studies have reported conflicting results regarding the role of ARF6 in dendritic spine development, but no clear answer for the controversy has been suggested. We found that ADP-ribosylation factor 6 (ARF6) either positively or negatively regulates dendritic spine formation depending on neuronal maturation and activity. ARF6 activation increased the spine formation in developing neurons, whereas it decreased spine density in mature neurons. Genome-wide microarray analysis revealed that ARF6 activation in each stage leads to opposite patterns of expression of a subset of genes that are involved in neuronal morphology. ARF6-mediated Rac1 activation via the phospholipase D pathway is the coincident factor in both stages, but the antagonistic RhoA pathway becomes involved in the mature stage. Furthermore, blocking neuronal activity in developing neurons using tetrodotoxin or enhancing the activity in mature neurons using picrotoxin or chemical long term potentiation reversed the effect of ARF6 on each stage. Thus, activity-dependent dynamic changes in ARF6-mediated spine structures may play a role in structural plasticity of mature neurons. 相似文献
5.
Jelena Kolic Aliya F. Spigelman Alannah M. Smith Jocelyn E. Manning Fox Patrick E. MacDonald 《The Journal of biological chemistry》2014,289(46):32109-32120
PI3Kγ, a G-protein-coupled type 1B phosphoinositol 3-kinase, exhibits a basal glucose-independent activity in β-cells and can be activated by the glucose-dependent insulinotropic polypeptide (GIP). We therefore investigated the role of the PI3Kγ catalytic subunit (p110γ) in insulin secretion and β-cell exocytosis stimulated by GIP. We inhibited p110γ with AS604850 (1 μmol/liter) or knocked it down using an shRNA adenovirus or siRNA duplex in mouse and human islets and β-cells. Inhibition of PI3Kγ blunted the exocytotic and insulinotropic response to GIP receptor activation, whereas responses to the glucagon-like peptide-1 or the glucagon-like peptide-1 receptor agonist exendin-4 were unchanged. Downstream, we find that GIP, much like glucose stimulation, activates the small GTPase protein Rac1 to induce actin remodeling. Inhibition of PI3Kγ blocked these effects of GIP. Although exendin-4 could also stimulate actin remodeling, this was not prevented by p110γ inhibition. Finally, forced actin depolymerization with latrunculin B restored the exocytotic and secretory responses to GIP during PI3Kγ inhibition, demonstrating that the loss of GIP-induced actin depolymerization was indeed limiting insulin exocytosis. 相似文献
6.
Oxana M. Tsygankova Hongbin Wang Judy L. Meinkoth 《The Journal of biological chemistry》2013,288(34):24636-24646
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells. 相似文献
7.
Robert van der Burgh Kalliopi Pervolaraki Marjolein Turkenburg Hans R. Waterham Joost Frenkel Marianne Boes 《The Journal of biological chemistry》2014,289(40):27757-27765
Protein prenylation is a post-translational modification whereby non-sterol isoprenoid lipid chains are added, thereby modifying the molecular partners with which proteins interact. The autoinflammatory disease mevalonate kinase deficiency (MKD) is characterized by a severe reduction in protein prenylation. A major class of proteins that are affected are small GTPases, including Rac1 and RhoA. It is not clear how protein prenylation of small GTPases relates to GTP hydrolysis activity and downstream signaling. Here, we investigated the contribution of RhoA prenylation to the biochemical pathways that underlie MKD-associated IL-1β hypersecretion using human cell cultures, Rac1 and RhoA protein variants, and pharmacological inhibitors. We found that when unprenylated, the GTP-bound levels of RhoA decrease, causing a reduction in GTPase activity and increased protein kinase B (PKB) phosphorylation. Cells expressing unprenylated RhoA produce increased levels of interleukin 1β mRNA. Of other phenotypic cellular changes seen in MKD, increased mitochondrial potential and mitochondrial elongation, only mitochondrial elongation was observed. Finally, we show that pharmacological inactivation of RhoA boosts Rac1 activity, a small GTPase whose activity was earlier implied in MKD pathogenesis. Together, our data show that RhoA plays a pivotal role in MKD pathogenesis through Rac1/PKB signaling toward interleukin 1β production and elucidate the effects of protein prenylation in monocytes. 相似文献
8.
Kathrin Sch?ker Susanne Bartsch Christian Patry Sandra J. Stoll Jan-Luuk Hillebrands Thomas Wieland Jens Kroll 《The Journal of biological chemistry》2015,290(10):6408-6418
Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis. 相似文献
9.
Elizabeth J. Gray Evangelia Petsalaki D. Andrew James Richard D. Bagshaw Melissa M. Stacey Oliver Rocks Anne-Claude Gingras Tony Pawson 《The Journal of biological chemistry》2014,289(51):35397-35408
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein. 相似文献
10.
Heike D?ppler Ligia I. Bastea Tim Eiseler Peter Storz 《The Journal of biological chemistry》2013,288(1):455-465
Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration. 相似文献
11.
Takahiro Seki Lijie Gong Aislinn J. Williams Norio Sakai Sokol V. Todi Henry L. Paulson 《The Journal of biological chemistry》2013,288(24):17145-17155
The functional diversity of deubiquitinating enzymes (DUBs) is not well understood. The MJD family of DUBs consists of four cysteine proteases that share a catalytic “Josephin” domain. The family is named after the DUB ATXN3, which causes the neurodegenerative disease Machado-Joseph disease. The two closely related Josephin domain-containing (JosD) proteins 1 and 2 consist of little more than the Josephin domain. To gain insight into the properties of Josephin domains, we investigated JosD1 and JosD2. JosD1 and JosD2 were found to differ fundamentally in many respects. In vitro, only JosD2 can cleave ubiquitin chains. In contrast, JosD1 cleaves ubiquitin chains only after it is monoubiquitinated, a form of posttranslational-dependent regulation shared with ATXN3. A significant fraction of JosD1 is monoubiquitinated in diverse mouse tissues. In cell-based studies, JosD2 localizes to the cytoplasm whereas JosD1 preferentially localizes to the plasma membrane, particularly when ubiquitinated. The membrane occupancy by JosD1 suggests that it could participate in membrane-dependent events such as cell motility and endocytosis. Indeed, time-lapse imaging revealed that JosD1 enhances membrane dynamics and cell motility. JosD1 also influences endocytosis in cultured cells by increasing the uptake of endocytic markers of macropinocytosis while decreasing those for clathrin- and caveolae-mediated endocytosis. Our results establish that two closely related DUBs differ markedly in activity and function and that JosD1, a membrane-associated DUB whose activity is regulated by ubiquitination, helps regulate membrane dynamics, cell motility, and endocytosis. 相似文献
12.
13.
Hai-Yan Huang Wen-Ting Zhang Wen-Yan Jiang Su-Zhen Chen Yang Liu Xin Ge Xi Li Yong-Jun Dang Bo Wen Xiao-Hui Liu Hao-Jie Lu Qi-Qun Tang 《The Journal of biological chemistry》2015,290(17):11119-11129
The integration of signals involved in deciding the fate of mesenchymal stem cells is largely unknown. We used proteomics profiling to identify RhoGDIβ, an inhibitor of the small G-protein Rho family, as a component that regulates commitment of C3H10T1/2 mesenchymal stem cells to the adipocyte or smooth muscle cell lineage in response to bone morphogenetic protein 4 (BMP4). RhoGDIβ is notably down-regulated during BMP4-induced adipocytic lineage commitment of C3H10T1/2 mesenchymal stem cells, and this involves the cytoskeleton-associated protein lysyl oxidase. Excess RhoGDIβ completely prevents BMP4-induced commitment to the adipocyte lineage and simultaneously stimulates smooth muscle cell commitment by suppressing the activation of Rac1. Overexpression of RhoGDIβ induces stress fibers of F-actin by a process involving phosphomyosin light chain, indicating that cytoskeletal tension regulated by RhoGDIβ contributes to determining adipocyte versus myocyte commitment. Furthermore, the overexpression of RacV12 (constitutively active form of Rac1) totally rescues the inhibition of adipocyte commitment by RhoGDIβ, simultaneously preventing formation of the smooth muscle-like phenotype and disrupting the stress fibers in cells overexpressing RhoGDIβ. Collectively, these results indicate that RhoGDIβ functions as a novel BMP4 signaling target that regulates adipogenesis and myogensis. 相似文献
14.
Bettina Huck Ralf Kemkemer Mirita Franz-Wachtel Boris Macek Angelika Hausser Monilola A. Olayioye 《The Journal of biological chemistry》2012,287(41):34604-34613
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated. 相似文献
15.
Kobayashi H Ogura Y Sawada M Nakayama R Takano K Minato Y Takemoto Y Tashiro E Watanabe H Imoto M 《The Journal of biological chemistry》2011,286(45):39259-39268
Immense previous efforts have elucidated the core machinery in cell migration, actin remodeling regulated by Rho family small GTPases including RhoA, Cdc42, and Rac1; however, the spatiotemporal regulation of these molecules remains largely unknown. Here, we report that EGF induces biphasic Rac1 activation in the process of cell migration, and UTKO1, a cell migration inhibitor, inhibits the second EGF-induced wave of Rac1 activation but not the first wave. To address the regulation mechanism and role of the second wave of Rac1 activation, we identified 14-3-3ζ as a target protein of UTKO1 and also showed that UTKO1 abrogated the binding of 14-3-3ζ to Tiam1 that was responsible for the second wave of Rac1 activation, suggesting that the interaction of 14-3-3ζ with Tiam1 is involved in this event. To our knowledge, this is the first report to use a chemical genetic approach to demonstrate the mechanism of temporal activation of Rac1. 相似文献
16.
Xiangchun Wang Chaoyang Jin Yi Tang Liu-Ya Tang Ying E. Zhang 《The Journal of biological chemistry》2013,288(30):21784-21792
Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs'' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation. 相似文献
17.
Yan Larson Jianyu Liu Payton D. Stevens Xin Li Jing Li B. Mark Evers Tianyan Gao 《The Journal of biological chemistry》2010,285(32):24987-24998
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays important roles in regulating cell motility. TSC2, a downstream target of AKT, is a central player in negatively controlling cell proliferation and protein translation through suppressing the activity of mTOR (mammalian target of rapamycin). However, the function of TSC2 in regulating cell migration remains unclear. Here, we show that TSC2 plays a critical role in the control of cell spreading, polarity, and migration. TSC2-deficient fibroblast cells were impaired in their ability to spread and alter actin cytoskeleton upon stimulation with insulin-like growth factor-1. Using scratch-induced polarization assay, we demonstrate that TSC2(−/−) fibroblast cells polarized poorly toward the wound compared with wild-type cells. Similarly, knockdown of TSC2 expression in colon cancer cells resulted in a marked decrease in cell motility. Functionally, the activation of CDC42- and RAC1-GTPase was largely reduced in TSC2 knock-out fibroblast and TSC2 knockdown cancer cells. Furthermore, overexpression of an activating p110α mutant or short term rapamycin treatment rescued the cell polarization defect in TSC2(−/−) fibroblast cells. Concurrently, the activation of CDC42 and RAC1 increased. The defect in cell migration and CDC42 and RAC1 activation was reversed by reintroducing TSC2 back into TSC2(−/−) fibroblast cells. Taken together, we identified a novel role of TSC2 in controlling cell polarity and migration by regulating CDC42 and RAC1 activation. 相似文献
18.
19.
Maho Takahashi Tara J. Dillon Chang Liu Yumi Kariya Zhiping Wang Philip J. S. Stork 《The Journal of biological chemistry》2013,288(39):27712-27723
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA. 相似文献
20.
目的:检测动脉粥样硬化患者巨噬细胞中组蛋白第9位赖氨酸的二甲基化(histone H3 lysine 9 dimethylation,H3K9Me2)的表达并探究其对炎症因子表达的影响及其机制。方法:选择厦门大学附属东南医院收治的动脉粥样硬化患者(n=20)与健康对照人群(n=22)作为研究对象,采用蛋白免疫印迹方法检测巨噬细胞中H3K9Me2的表达,并通过酶联免疫吸附的方法检测其血清炎症因子表达。随后,通过小干扰RNA(small interfering RNA,siRNA)敲减赖氨酸特异去甲基化酶1A(lysine-specific demethylase 1A,LSD1)后,在氧化低密度脂蛋白(oxidized low-density lipoproteins,ox-LDL)诱导的巨噬细胞中结合白免疫印迹和染色质免疫共沉淀的方法检测细胞整体H3K9Me2的表达及炎症因子启动子区H3K9Me2水平。同时,分析巨噬细胞中上清中炎症因子表达变化。结果:动脉粥样硬化病人巨噬细胞中H3K9Me2水平显著下调,并与血清中炎症因子表达呈负相关。在敲减LSD1后,ox-LDL诱导的巨噬细胞中H3K9Me2整体水平以及炎症因子启动子区H3K9Me2水平下调均被抑制。同时,核因子-κB(NF-κB)结合启动子区介导的炎症因子表达增强也被抑制。结论:巨噬细胞中H3K9Me2的表达与动脉粥样硬化病人血清中炎症因子的表达成负相关,而组蛋白去甲基化酶LSD1很可能在其中参与H3K9Me2水平调控,并通过影响NF-κB与启动子区结合调节炎症因子表达。 相似文献