首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new coordinate system for primate skulls was defined by the orbital axis and the validity of the system was examined. This system is thought to be equivalent throughout the primates. With the aid of photogrammetry the three-dimensional coordinates of 39 points on the skulls of 479 individuals comprising 54 species including man were accurately measured. The orbital structure is morphologically stable and its axis represents a comparative horizontal. The midsagittal plane and the bilateral symmetry of the cranium are also stable. The morphological stability in angular dimensions is confirmed by a standard deviation smaller than 2.0°. The major evolutionary change in the neurocranium is the inclination of the cranial base from the orbital horizon, and the inclination is related to the neurocranial size. The ear-eye plane is generally inapplicable to the primates, because it is affected by the orbital size and the descent of the auricular part due to the inclination of the cranial base. The clivus line or the vestibular coordinate system is not desirable as the horizontal, either. The evolutionary development of the facial part of the cranium is independent of that of the neurocranium and these two parts are separated by the orbital horizon.  相似文献   

2.
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.  相似文献   

3.
Bilateral symmetry is visually salient to diverse animals including birds, but whereas experimental studies typically use bilaterally symmetrical two-dimensional patterns that are viewed approximately fronto-parallel; in nature, animals observe three-dimensional objects from all angles. Many animals and plant structures have a plane of bilateral symmetry. Here, we first (experiment I) give evidence that young poultry chicks readily generalize bilateral symmetry as a feature of two-dimensional patterns in fronto-parallel view. We then test the ability of chicks to recognize symmetry in images that would be produced by the transformed view produced by a 40° horizontal combined with a 20° vertical rotation of a pattern on a spherical surface. Experiment II gives evidence that chicks trained to distinguish symmetrical from asymmetrical patterns treat rotated views of symmetrical 'objects' as symmetrical. Experiment III gives evidence that chicks trained to discriminate rotated views of symmetrical 'objects' from asymmetrical patterns generalize to novel symmetrical objects either in fronto-parallel or rotated view. These findings emphasize the importance of bilateral symmetry for three-dimensional object recognition and raise questions about the underlying mechanisms of symmetry perception.  相似文献   

4.
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.  相似文献   

5.
The standard explanation for the origin of bilateral symmetry is that it conferred an advantage over radial symmetry for directed locomotion. However, recent developmental and phylogenetic studies suggest that bilateral symmetry may have evolved in a sessile benthic animal, predating the origin of directed locomotion. An evolutionarily feasible alternative explanation is that bilateral symmetry evolved to improve the efficiency of internal circulation by affecting the compartmentalization of the gut and the location of major ciliary tracts. This functional design principle is illustrated best by the phylum Cnidaria where symmetry varies from radial to tetraradial, biradial and bilateral. In the Cnidaria, bilateral symmetry is manifest most strongly in the internal anatomy and the disposition of ciliary tracts. Furthermore, the bilaterally symmetrical Cnidaria are typically sessile and, in those bilaterally symmetrical cnidarians that undergo directed locomotion, the secondary body axis does not bear a consistent orientation to the direction of locomotion as it typically does in Bilateria. Within the Cnidaria, the hypothesized advantage of bilateral symmetry for internal circulation can be tested by experimental analysis and computer modeling of fluid mechanics. The developmental evolution of symmetry within the Cnidaria can be further explored through comparative gene expression studies among species whose symmetry varies.  相似文献   

6.

Background

Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins and many flowers). So far, there is no general method for the shape analysis of these types of symmetry.

Results

We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis.

Conclusions

The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry.  相似文献   

7.
This paper describes a new methodology that enables mapping of the ligament insertion sites onto bone surfaces in the knee joint by co-registration of the data acquired using digitization and computed tomography (CT). Local coordinate systems on the distal femur and proximal tibia were established by three spherical fiducial markers rigidly affixed to each bone. The fiducial marker centroid locations were identified by a least-squares sphere-fitting algorithm. An optimization correction procedure was proposed to mitigate the effect of the target registration error (TRE) on the alignment of coordinate systems for co-registration. A test with four cadaveric specimens demonstrated successful mapping of insertion sites for five ligaments. Fiducial registration error (FRE) as measured by the differences in inter-marker distances between the two modalities was smaller than 2%. The optimization procedure corrected the insertion site invisibility or partial visibility problem and improved the overall mapping quality, as indicated by substantial reduction of the mean and dispersion of distances from digitized insertion site points to the bone surfaces.  相似文献   

8.
The time difference profile method of gel scanning chromatography developed by Brumbaugh, Saffen and Chun (Biophysical Chemistry, 1979) has been examined by computer simulation. The method is found to produce values for centroid movements that mimic those of the system being examined but are not quantitatively correct. In all cases the time differential "centroid" is larger than that of the concentration derivative (true) centroid and move at a rate slightly faster than the true centroids. This faster rate slowly decreases towards the true rate but does not approach it within reasonable times. This distorted movement reflects the distorted emphasis given to the larger species in the time differential method. The time difference method has been shown to give an adequate measure of the axial dispersion coefficient, L, for single species systems.  相似文献   

9.
Comparative analysis provides evidence that bilateral symmetry is a primary character of Cnidaria. All anthozoan taxa are characterized by bilateral symmetry. The anthozoan pharyngeal plane is a plane of bilateral symmetry of mesenteries and, at the same time, it is a plane of bilateral symmetry of regulatory gene expression in anthozoan morphogenesis. In Medusozoa, the bilateral symmetry is replaced by radial symmetry, but some hydrozoans (for example, Corymorphidae) demonstrate bilateral symmetry. The bilateral symmetry of Cnidaria is thought to be inherited from the common ancestors of both cnidarians and triploblastic bilaterians. The secondary radial symmetry of Cnidaria evidently is a result of the adaptation to the sessile mode of life. The presence of both the marginal and labial rings of tentacles is supposed to be a plesiomorphic character of Cnidaria. In some groups of cnidarians, one of the tentacle rings may be reduced.  相似文献   

10.
Two, logically distinct but sometimes compatible, mechanismsof camouflage are background-matching and disruptive coloration.In the former, an animal's coloration comprises a random sampleof the background, and so target–background discriminationis impeded. In the latter, object or feature recognition iscompromised by placing bold, high-contrast colors so that theybreak up the prey's body into apparently unconnected objects.Recent experimental evidence for the utility of disruptive colors,above and beyond that conferred by background matching, hasbeen based on artificial prey with patterns lacking a planeof symmetry. However, it is plausible that the bilateral symmetrypresent in natural prey may compromise the efficiency of disruptivecoloration, on account of the potency of symmetry as a cue invisual search. In this study, we tested this prediction in thefield, by tracking the "survival" under bird predation of artificialmothlike targets placed on oak trees. These had background-matchingcolor patches placed either disruptively or nondisruptivelyand with or without bilateral symmetry. We found that symmetryreduced the effectiveness of both nondisruptive and disruptivebackground-matching coloration to a similar degree so that thenegative effects of symmetry on concealment are no greater fordisruptive than nondisruptive patterns.  相似文献   

11.
This study tested preference for abstract patterns, comparing random patterns to a two-fold bilateral symmetry. Stimuli were presented at random locations in the periphery. Preference for bilateral symmetry has been extensively studied in central vision, but evaluation at different locations had not been systematically investigated. Patterns were presented for 200 ms within a large circular region. On each trial participant changed fixation and were instructed to select any location. Eccentricity values were calculated a posteriori as the distance between ocular coordinates at pattern onset and coordinates for the centre of the pattern. Experiment 1 consisted of two Tasks. In Task 1, participants detected pattern regularity as fast as possible. In Task 2 they evaluated their liking for the pattern on a Likert-scale. Results from Task 1 revealed that with our parameters eccentricity did not affect symmetry detection. However, in Task 2, eccentricity predicted more negative evaluation of symmetry, but not random patterns. In Experiment 2 participants were either presented with symmetry or random patterns. Regularity was task-irrelevant in this task. Participants discriminated the proportion of black/white dots within the pattern and then evaluated their liking for the pattern. Even when only one type of regularity was presented and regularity was task-irrelevant, preference evaluation for symmetry decreased with increasing eccentricity, whereas eccentricity did not affect the evaluation of random patterns. We conclude that symmetry appreciation is higher for foveal presentation in a way not fully accounted for by sensitivity.  相似文献   

12.
Development of pentameral symmetry in echinoderms occurred by coiling and closing up of bilateral asymmetrical trimeral metamery, characteristic of ancestral echinoderms. It originated in the ambulacral system and further developed in other systems under the influence of the original metamery and primary bilateral asymmetry. Stages of the development of pentameral symmetry on the basis of bilateral symmetry are recognized in the morphology of the ambulacral system of the earliest echinoderms.  相似文献   

13.
In this paper a method is presented to calculate Euler's angles of rotation of a body segment during locomotion without a priori defining the location of the center of rotation, and without defining a local vertebral coordinate system. The method was applied to in vivo spinal kinematics. In this method, the orientation of each segment is identified by a set of three markers. The orientation of the axes of rotation is calculated based on the average position of the markers during one stride cycle. Some restrictions and assumptions should be made. The approach is viable only when the average orientation of the anatomical axes of rotation of each spinal segment during a stride cycle coincides with the three axes of the laboratory coordinate system. Furthermore, the rotations should be symmetrical with respect to both sides of the plane of symmetry of the spinal segment, and the subject should move parallel to one axis of the laboratory coordinate system. Since in experimental conditions these assumptions will only be met approximately, errors will be introduced in the calculated angles of rotation. The magnitude of the introduced errors was investigated in a computer simulation experiment. Since the maximal errors did not exceed 0.7° in a range of misalignments up to 10° between the two coordinate systems, the approach proved to be a valid method for the estimation of spinal kinematics.  相似文献   

14.
A nontraditional approach to construction of metabolic charts is proposed. It is based on the discovery of symmetry in the structure of the network of metabolic reactions. So if compounds and reactions are located on the metabolic chart according to their chemical features, the chart structure will acquire a periodic pattern. The charts thus created have a natural two-dimensional coordinate system of the metabolic network. Points on the X-axis correspond to number of carbon atoms in the carbon skeleton of compounds in columns and points on the Y-axis correspond to number of -COOH groups in compounds filing in series of rows on the charts. As a result this coordinate system sections the field of the charts into rectangular blocks each of which containing compounds with the same numbers of carbon atoms and the same numbers of -COOH groups. The latter substantially improves the charts and makes them a more valid source of metabolic data possessing heuristic properties. The periodicity of the metabolic network structure enables us easily to remember information about biochemical reactions and their products. The charts can also be used as a universal key for any biological database information that is systematically connected with the metabolic information. The charts can be important for medicine and pharmacology because they can help to understand the metabolic processes involved in decomposition of a particular drug or to find the chain of reactions blocked or initiated by administering this drug into a living organism.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1691–1699.Original Russian Text Copyright © 2004 by Malygin.  相似文献   

15.
In the experimental determination of the orthotropic elastic constants, one often encounters the situation in which the symmetry axes of the material are not coincident with specimen axes along which the material testing is accomplished. The problem of calculating the compliance coefficients in the symmetry coordinate system from measurements of the compliance coefficients made in an arbitrary, specimen fixed, coordinate system is considered here.  相似文献   

16.
A flexible calibration approach for line structured light vision system is proposed in this paper. Firstly a camera model is established by transforming the points from the 2D image plane to the world coordinate frame, and the intrinsic parameters of camera can be obtained accurately. Then a novel calibration method for structured light projector is presented by moving a planar target with a square pattern randomly, and the method mainly involves three steps: first, a simple linear model is proposed, by which the plane equation of the target at any orientations can be determined based on the square’s geometry information; second, the pixel coordinates of the light stripe center on the target images are extracted as the control points; finally, the points are projected into the camera coordinate frame with the help of the intrinsic parameters and the plane equations of the target, and the structured light plane can be determined by fitting these three-dimensional points. The experimental data show that the method has good repeatability and accuracy.  相似文献   

17.
The role of symmetry detection in early visual processing and the sensitivity of biological visual systems to symmetry across a wide range of organisms suggest that symmetry can be detected by low-level visual mechanisms. However, computational and functional considerations suggest that higher-level mechanisms may also play a role in facial symmetry detection. We tested this hypothesis by examining whether symmetry detection is better for faces than comparable patterns, which share low-level properties with faces. Symmetry detection was better for upright faces than for inverted faces (experiment 1) and contrast-reversed faces (experiment 2), implicating high-level mechanisms in facial symmetry detection. In addition, facial symmetry detection was sensitive to spatial scale, unlike low-level symmetry detection mechanisms (experiment 3), and showed greater sensitivity to a 45 degrees deviation from vertical than is found for other aspects of face perception (experiment 4). These results implicate specialized, higher-level mechanisms in the detection of facial symmetry. This specialization may reflect perceptual learning resulting from extensive experience detecting symmetry in faces or evolutionary selection pressures associated with the important role of facial symmetry in mate choice and 'mind-reading' or both.  相似文献   

18.
BACKGROUND: Recent claims in neuroscience and evolutionary biology suggest that the aesthetic sense reflects preferences for image signals whose characteristics best fit innate brain mechanisms of visual recognition. RESULTS: This hypothesis was tested by behaviourally measuring, for a set of initially unfamiliar images, the effects of category learning on preference judgements by humans, and by relating the observed data to computationally reconstructed internal representations of categorical concepts. Category learning induced complex shifts in preference behaviour. Two distinct factors - complexity and bilateral symmetry - could be identified from the data as determinants of preference judgements. The effect of the complexity factor varied with object knowledge acquired through category learning. In contrast, the impact of the symmetry factor proved to be unaffected by learning experience. Computer simulations suggested that the preference for pattern complexity relies on active (top-down) mechanisms of visual recognition, whereas the preference for pattern symmetry depends on automatic (bottom-up) mechanisms. CONCLUSIONS: Human visual preferences are not fully determined by (objective) structural regularities of image stimuli but also depend on their learned (subjective) interpretation. These two aspects are reflected in distinct complementary factors underlying preference judgements, and may be related to complementary modes of visual processing in the brain.  相似文献   

19.
The mechanical behaviour of a closed layered membrane enclosing a structureless interior is considered. The shape of such an object in flaccid conditions is determined theoretically by assuming that it corresponds to the minimum value of the membrane bending energy. The symmetry breaking properties of this system are revealed. It is suggested that a continuous transition from an axisymmetrical shape involving mirror symmetry with regard to the equatorial plane of the object to the shape with polar asymmetry could be the primary event in establishing cell polarity.  相似文献   

20.
The macroscopic mechanical properties of trabecular bone can be predicted by its architecture using theoretical relationships between the elastic and architectural properties. Microdamage caused by overloading or fatigue decreases the apparent elastic moduli of trabecular bone requiring these relationships to be modified to predict the damaged elastic properties. In the case of isotropic damage, the apparent level elastic properties could be determined by multiplying all of the elastic constants by a single scalar factor. If the damage is anisotropic, the elastic constants may change by differing factors and the material coordinate system could become misaligned with the fabric coordinate system. High-resolution finite element models were used to simulate damage overloading on seven trabecular bone specimens subjected to pure shear strain in two planes. Comparison of the apparent elastic moduli of the specimens before and after damage showed that the reduction of the elastic moduli was anisotropic. This suggests that the microdamage within the specimens was inhomogeneous. However, after damage the specimens exhibited nearly orthotropic material symmetry as they did before damage. Changes in the orientation of the orthotropic material coordinate system were also small and occurred primarily in the transverse plane. Thus, while damage in trabecular bone is anisotropic, the material coordinate system remains aligned with the fabric tensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号