首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest–activity rhythms and relies upon different groups of PERIOD (PER)–expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day–night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.  相似文献   

2.
Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest–activity rhythms and relies upon different groups of PERIOD (PER)–expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day–night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.  相似文献   

3.
4.
Robust self-sustained oscillations are a ubiquitous characteristic of circadian rhythms. These include Drosophila locomotor activity rhythms, which persist for weeks in constant darkness (DD). Yet the molecular oscillations that underlie circadian rhythms damp rapidly in many Drosophila tissues. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms that underlie the differences between damped and self-sustaining oscillations remain largely unknown. A small cluster of neurons in adult Drosophila brain, the ventral lateral neurons (LNvs), is essential for self-sustained behavioral rhythms and has been proposed to be the primary pacemaker for locomotor activity rhythms. With an LNv-specific driver, we restricted functional clocks to these neurons and showed that they are not sufficient to drive circadian locomotor activity rhythms. Also contrary to expectation, we found that all brain clock neurons manifest robust circadian oscillations of timeless and cryptochrome RNA for many days in DD. This persistent molecular rhythm requires pigment-dispersing factor (PDF), an LNv-specific neuropeptide, because the molecular oscillations are gradually lost when Pdf01 mutant flies are exposed to free-running conditions. This observation precisely parallels the previously reported effect on behavioral rhythms of the Pdf01 mutant. PDF is likely to affect some clock neurons directly, since the peptide appears to bind to the surface of many clock neurons, including the LNvs themselves. We showed that the brain circadian clock in Drosophila is clearly distinguishable from the eyes and other rapidly damping peripheral tissues, as it sustains robust molecular oscillations in DD. At the same time, different clock neurons are likely to work cooperatively within the brain, because the LNvs alone are insufficient to support the circadian program. Based on the damping results with Pdf01 mutant flies, we propose that LNvs, and specifically the PDF neuropeptide that it synthesizes, are important in coordinating a circadian cellular network within the brain. The cooperative function of this network appears to be necessary for maintaining robust molecular oscillations in DD and is the basis of sustained circadian locomotor activity rhythms.  相似文献   

5.
6.
K M Vaze  K L Nikhil  V K Sharma 《Heredity》2013,111(4):265-274
Circadian rhythms are perhaps among the genetically best characterized behaviours. Several mutations with drastic effects on circadian processes have been identified and models developed to explain how clock genes and their products generate self-sustained oscillations. Although natural variations in circadian phenotypes have been studied extensively, the genetic basis of such adaptive variations remains largely unknown. Here we report the results of a preliminary genetic analysis of adaptive divergence of circadian phenotypes in populations of fruit flies Drosophila melanogaster. Two sets of populations, ‘early'' and ‘late'', were created in a long-term laboratory selection for morning and evening emergence, with four independent replicates each. Over the course of ∼55 generations, the early flies evolved increased morning emergence and a shorter circadian period, whereas late flies evolved increased evening emergence and longer period. To examine the genetic basis of circadian phenotypes, we set up crosses between early and late flies, and monitored emergence and activity/rest rhythms in the F1, backcrossed and F2 progeny. Our analysis suggests that the genetic basis of divergent circadian phenotypes in early and late stocks is primarily autosomal. Line-cross analysis revealed that additive and non-additive genetic effects contribute to the divergence of circadian phenotypes in early and late flies.  相似文献   

7.

Background

In animals, neuropeptide signaling is an important component of circadian timekeeping. The neuropeptide pigment dispersing factor (PDF) is required for several aspects of circadian activity rhythms in Drosophila.

Methodology/Principal Findings

Here we investigate the anatomical basis for PDF''s various circadian functions by targeted PDF RNA-interference in specific classes of Drosophila neuron. We demonstrate that PDF is required in the ventro-lateral neurons (vLNs) of the central brain and not in the abdominal ganglion for normal activity rhythms. Differential knockdown of PDF in the large or small vLNs indicates that PDF from the small vLNs is likely responsible for the maintenance of free-running activity rhythms and that PDF is not required in the large vLNs for normal behavior. PDF''s role in setting the period of free-running activity rhythms and the proper timing of evening activity under light:dark cycles emanates from both subtypes of vLN, since PDF in either class of vLN was sufficient for these aspects of behavior.

Conclusions/Significance

These results reveal the neuroanatomical basis PDF''s various circadian functions and refine our understanding of the clock neuron circuitry of Drosophila.  相似文献   

8.
9.
10.
Belvin MP  Zhou H  Yin JC 《Neuron》1999,22(4):777-787
We report the role of dCREB2, the Drosophila homolog of CREB/CREM, in circadian rhythms. dCREB2 activity cycles with a 24 hr rhythm in flies, both in a light:dark cycle and in constant darkness. A mutation in dCREB2 shortens circadian locomotor rhythm in flies and dampens the oscillation of period, a known clock gene. Cycling dCREB2 activity is abolished in a period mutant, indicating that dCREB2 and Period affect each other and suggesting that the two genes participate in the same regulatory feedback loop. We propose that dCREB2 supports cycling of the Period/Timeless oscillator. These findings support CREB's role in mediating adaptive behavioral responses to a variey of environmental stimuli (stress, growth factors, drug addiction, circadian rhythms, and memory formation) in mammals and long-term memory formation and circadian rhythms in Drosophila.  相似文献   

11.
Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer’s disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons.KEY WORDS: Alzheimer’s disease, Circadian dysfunction, Non-cell-autonomous Aβ toxicity, Drosophila model, Biological clock  相似文献   

12.
A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBTK/R) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBTK/R antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo. Overexpression of short-period, long-period, or wild-type DBT in flies produced the same circadian periods produced by the corresponding alleles of the endogenous gene. These mutations therefore dictate an altered “set point” for period length that is not altered by overexpression. Overexpression of the DBTK/R produced effects proportional to the titration of endogenous DBT, with long circadian periods at lower expression levels and arrhythmicity at higher levels. This first analysis of adult flies with a virtual lack of DBT activity demonstrates that DBT's kinase activity is necessary for normal circadian rhythms and that a general reduction of DBT kinase activity does not produce short periods.  相似文献   

13.
Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons.  相似文献   

14.
15.
16.
Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson''s disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([11C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed.  相似文献   

17.
18.
In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1−/− mice, which are known to be a “short-period mutant,” entrained to a shorter period of feeding cycles than did Cry2−/− mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1 −/− mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.  相似文献   

19.
20.
Eukaryotic circadian clocks are based on self-sustaining, cell-autonomous oscillatory feedback loops that can synchronize with the environment via recurrent stimuli (zeitgebers) such as light. The components of biological clocks and their network interactions are becoming increasingly known, calling for a quantitative understanding of their role for clock function. However, the development of data-driven mathematical clock models has remained limited by the lack of sufficiently accurate data. Here we present a comprehensive model of the circadian clock of Neurospora crassa that describe free-running oscillations in constant darkness and entrainment in light-dark cycles. To parameterize the model, we measured high-resolution time courses of luciferase reporters of morning and evening specific clock genes in WT and a mutant strain. Fitting the model to such comprehensive data allowed estimating parameters governing circadian phase, period length and amplitude, and the response of genes to light cues. Our model suggests that functional maturation of the core clock protein Frequency causes a delay in negative feedback that is critical for generating circadian rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号