首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honey bees provide invaluable economic and ecological services while simultaneously facing stressors that may compromise their health. For example, agricultural landscapes, such as a row crop system, are necessary for our food production, but they may cause poor nutrition in bees from a lack of available nectar and pollen. Here, we investigated the foraging dynamics of honey bees in a row crop environment. We decoded, mapped, and analyzed 3459 waggle dances, which communicate the location of where bees collected food, for two full foraging seasons (April–October, 2018–2019). We found that bees recruited nestmates mostly locally (<2 km) throughout the season. The shortest communicated median distances (0.474 and 0.310 km), indicating abundant food availability, occurred in July in both years, which was when our row crops were in full bloom. We determined, by plotting and analyzing the communicated locations, that almost half of the mid‐summer recruitment was to row crops, with 37% (2018) and 50% (2019) of honey bee dances indicating these fields. Peanut was the most attractive in July, followed by corn and cotton but not soybean. Overall, row crop fields are indicated by a surprisingly large proportion of recruitment dances, suggesting that similar agricultural landscapes may also provide mid‐summer foraging opportunities for honey bees.  相似文献   

2.
Honeybee foraging in differentially structured landscapes   总被引:1,自引:0,他引:1  
Honeybees communicate the distance and location of resource patches by bee dances, but this spatial information has rarely been used to study their foraging ecology. We analysed, for the first time to the best of the authors' knowledge, foraging distances and dance activities of honeybees in relation to landscape structure, season and colony using a replicated experimental approach on a landscape scale. We compared three structurally simple landscapes characterized by a high proportion of arable land and large patches, with three complex landscapes with a high proportion of semi-natural perennial habitats and low mean patch size. Four observation hives were placed in the centre of the landscapes and switched at regular intervals between the six landscapes from the beginning of May to the end of July. A total of 1137 bee dances were observed and decoded. Overall mean foraging distance was 1526.1 +/- 37.2 m, the median 1181.5 m and range 62.1-10037.1 m. Mean foraging distances of all bees and foraging distances of nectar-collecting bees did not significantly differ between simple and complex landscapes, but varied between month and colonies. Foraging distances of pollen-collecting bees were significantly larger in simple (1743 +/- 95.6 m) than in complex landscapes (1543.4 +/- 71 m) and highest in June when resources were scarce. Dancing activity, i.e. the number of observed bee dances per unit time, was significantly higher in complex than in simple landscapes, presumably because of larger spatial and temporal variability of resource patches in complex landscapes. The results facilitate an understanding of how human landscape modification may change the evolutionary significance of bee dances and ecological interactions, such as pollination and competition between honeybees and other bee species.  相似文献   

3.
Honey bee queens (Apis mellifera) who mate with multiple males produce colonies that are filled with numerous genetically distinct patrilines of workers. A genetically diverse colony benefits from an enhanced foraging effort, fuelled in part by an increase in the number of recruitment signals that are produced by foragers. However, the influence of patriline diversity on the attention paid to these signals by audiences of potentially receptive workers remains unexplored. To determine whether recruitment dances performed by foragers in multiple-patriline colonies attract a greater number of dance followers than dances in colonies that lack patriline diversity, we trained workers from multiple- and single-patriline colonies to forage in a greenhouse and monitored their dance-following activity back in the hives. On average, more workers followed a dance if it was performed in a multiple-patriline colony rather than a single-patriline colony (33% increase), and for a greater number of dance circuits per follower. Furthermore, dance-following workers in multiple-patriline colonies were more likely to exit their hive after following a dance, although this did not translate to a difference in colony-level exit rates between treatment types. Recruiting nest mates to profitable food sources through dance communication is critical to a colony’s foraging success and long-term fitness; polyandrous queens produce colonies that benefit not only from increased recruitment signalling, but also from the generation of larger and more attentive audiences of signal receivers. This study highlights the importance of integrating responses of both signal senders and receivers to understand more fully the success of animal-communication systems.  相似文献   

4.
Why do some social insects have sophisticated recruitment systems,while other species do not communicate about food source locationsat all? To answer this question, it is necessary to identifythe social or ecological factors that make recruitment adaptiveand thus likely to evolve. We developed an individual-basedmodel of honey bee foraging to quantify the benefits of recruitmentunder different spatial distributions of nondepleting resourcepatches and with different colony sizes. Benefits of recruitmentwere strongly dependent on resource patch quality, density,and variability. Communication was especially beneficial ifpatches were poor, few, and variable. A sensitivity analysisof the model showed that under conditions of high resource densityrecruitment could even become detrimental, especially if foragingduration was short, tendency to scout was high, or recruitsneeded a long time to find communicated locations. Colony size,a factor often suspected to influence recruitment evolution,had no significant effect. These results may explain the recentexperimental findings that in honey bees, benefits of waggledance recruitment seem to vary seasonally and with habitat.They may also explain why some, but not other, species of socialbees have evolved a strategy to communicate food locations tonest mates.  相似文献   

5.
If the cognitive performance of animals reflects their particular ecological requirements, how can we explain appreciable variation in learning ability amongst closely related individuals (e.g. foraging workers within a bumble bee colony)? One possibility is that apparent ‘errors’ in a learning task actually represent an alternative foraging strategy. In this study we investigate the potential relationship between foraging ‘errors’ and foraging success among bumble bee (Bombus terrestris) workers. Individual foragers were trained to choose yellow, rewarded flowers and ignore blue, unrewarded flowers. We recorded the number of errors (visits to unrewarded flowers) each bee made during training, then tested them to determine how quickly they discovered a more profitable food source (either familiar blue flowers, or novel green flowers). We found that error prone bees discovered the novel food source significantly faster than accurate bees. Furthermore, we demonstrate that the time taken to discover the novel, more profitable, food source is positively correlated with foraging success. These results suggest that foraging errors are part of an ‘exploration’ foraging strategy, which could be advantageous in changeable foraging environments. This could explain the observed variation in learning performance amongst foragers within social insect colonies.  相似文献   

6.
How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.  相似文献   

7.
Social information is widely used in the animal kingdom and can be highly adaptive. In social insects, foragers can use social information to find food, avoid danger, or choose a new nest site. Copying others allows individuals to obtain information without having to sample the environment. When foragers communicate information they will often only advertise high-quality food sources, thereby filtering out less adaptive information. Stingless bees, a large pantropical group of highly eusocial bees, face intense inter- and intra-specific competition for limited resources, yet display disparate foraging strategies. Within the same environment there are species that communicate the location of food resources to nest-mates and species that do not. Our current understanding of why some species communicate foraging sites while others do not is limited. Studying freely foraging colonies of several co-existing stingless bee species in Brazil, we investigated if recruitment to specific food locations is linked to 1) the sugar content of forage, 2) the duration of foraging trips, and 3) the variation in activity of a colony from 1 day to another and the variation in activity in a species over a day. We found that, contrary to our expectations, species with recruitment communication did not return with higher quality forage than species that do not recruit nestmates. Furthermore, foragers from recruiting species did not have shorter foraging trip durations than those from weakly recruiting species. Given the intense inter- and intraspecific competition for resources in these environments, it may be that recruiting species favor food resources that can be monopolized by the colony rather than food sources that offer high-quality rewards.  相似文献   

8.
Summary Waggle dance activity associated with seasonal absconding (migration) was investigated in two colonies of the African honey bee. Prior to absconding, waggle dances regularly communicated distances up to 10–20 km from the nests. However, compared to waggle dances observed during nonabsconding periods, those occurring prior to migration were less associated with food sources, occurred during periods of little or no flight activity, and exhibited great variability in the communication of distance by consecutive waggle runs of individual bees. It is therefore unlikely that migration dances communicated the locations of, or stimulated immediate recruitment for, specific foraging or nesting sites. Rather, the dances may have functioned to establish a general route of travel. The majority of migration dances observed were oriented in an easterly direction, and upon departure both colonies traveled towards the E-SE. The orientation of migration dances occurred independently of the directions communicated by waggle dances associated with past foraging success or the sampling of alternate foraging areas. Migration dance orientation may have been affected by prevailing wind directions, because during the migration period winds blew primarily from the east. However, it is unlikely that wind direction was the only factor influencing migration dance orientation. The lack of immediate flight activity associated with migration dance performance suggests the dances may have gradually prepared colonies for migratory movement by conveying a message to fly for a long, but unspecified distance in a certain direction. Waggle dances associated with migration may therefore function differently from those associated with foraging and nest site selection, which convey both the distance and direction to specific locations.  相似文献   

9.
Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker-worker communication signals that facilitate the swift discovery and exploitation of food resources.  相似文献   

10.
The vibration signal is one of the most commonly occurring communication displays in honey bee (Apis mellifera) colonies. It may function in a ‘modulatory’ manner, because it causes a nonspecific increase in activity that enhances a variety of behaviors depending upon the age and caste of the recipient. We examined honey bee workers that performed vibration signals on other workers in three observation hives, each containing a population of marked bees of known age. In all three colonies, the mean age of the first performance of the vibration signal was significantly different from the mean age at which workers first performed waggle dances, carried pollen loads, or attended the queen. However, workers of all ages, except those less than 3 d old, could perform vibration signals. In older workers of foraging age, signal performance was most closely associated with recent foraging success. Younger workers that vibrated did not appear to be early-maturing foragers and thus their signals were probably not influenced by food collection. Rather, for these preforaging-age workers, signal performance was associated more with periods of orientation flight, during which younger bees learn the location of the nest and surrounding landmarks. Thus, the vibration signal may be triggered by different stimuli in different worker age classes. Because it elicits a general increase in activity in all recipients, the signal may help adjust many different colony behaviors simultancously to changes in foraging success and colony development.  相似文献   

11.
Although several independent lines of evidence show that bees can make use of information provided by their dance language, there is an ongoing controversy about the significance of the dance information versus odor cues in the search behavior of recruited bees. A series of experiments was performed to assess the relative significance of dance information and odors for the site-specific search of recruit bees. In these experiments recruit bees were trapped automatically at arrays of artificial flowers at various distances from the hive. The distribution of directions in which the recruits searched for food was compared between recruitment by dancers performing well-oriented dances on the vertical side of the comb and dancers performing disoriented dances on a horizontal comb. The results show quantitatively that bees use both odor cues and the dance information. The greater the distance to the feeding site, the greater is the relative significance of the dance information.  相似文献   

12.
Abstract. 1. The allocation of honey bee foragers among food patches is a result of decisions made by individual bees that are based on internal and external cues.
2. Decision-making processes are often based on internal thresholds. For example, if the quality of the food source is assessed by a forager as exceeding its internal threshold, the bee will continue foraging on that food source.
3. It is often assumed that all individuals have the same threshold and therefore use the same thresholds in decision-making, but because the honey bee queen mates with 12–30 males, the workers within a colony are genetically heterogeneous. Thus, the thresholds used by individual bees may be genetically variable within a colony.
4. Models of colony-level foraging behaviour of honey bees suggest that the rate of abandoning food sources is a critical parameter affecting foraging success. Moreover, these models show that variance among subfamilies in their abandonment rates may increase the colony's foraging efficiency.
5. Experimental data showing the relationship between the probability of abandoning a food source and its profitability are lacking, as is information on any variation in abandonment rates among subfamilies.
6. Abandonment rates were determined experimentally for four honey bee families for seven different sucrose concentrations. The results showed that abandonment rates appear to be invariant among (sub)families. The importance of forager fidelity to declining food sources is discussed with respect to foraging efficiency in a changing environment.  相似文献   

13.
One of the most conspicuous activities of worker bees inside a hive is the shaking of other workers. This shaking has long been suspected to be a communication behavior, but its information content and function have until recently remained mysterious. Prior studies of the colony-level patterns of the production of the shaking signal suggest strongly that this signal serves to arouse workers to greater activity, such as at times of good foraging. Data from our observations of individual bees bolster the hypothesis that the shaking signal informs workers to prepare for a higher level of activity. We followed foragers in a colony whose only source of ‘nectar’ was a sugar-water feeder and discovered that when the feeder was left empty for 1–3 d and then refilled, the first bees to find the food initially produced only shaking signals upon return to the hive. It was not until they had completed several trips to the feeder that they began to produce waggle dances. Evidently, the shaking signal and the waggle dance function together to stimulate a colony's foragers to activity.  相似文献   

14.
《Animal behaviour》1986,34(2):377-385
The relationship between the vibration dance and foraging was investigated for the honey bee, Apis mellifera. Foraging-age workers responded to the vibration dance by moving into the area of the hive where waggle dances were concentrated and by increasing their rate of movement throughout the colony. Vibrated non-foraging-age bees did not move into the waggle dance region or exhibit increased movement in the hive. Small peaks of vibration dance activity, which tended to coincide temporally with small peaks of foraging activity, occurred with a similar frequency throughout the year. These small vibration peaks may have adjusted foraging to short-term fluctuations in food availability. In spring and summer all study hives exhibited large, morning peaks of vibration dance activity, which preceded foraging. Since there was a significant, positive slope for the regression of the magnitude of these morning vibration peaks on the mean level of waggle dancing occurring later during the same day, morning vibration activity may have exerted a long-term ‘priming’ influence on foraging behaviour. In fall and winter, compared with spring and summer, morning vibration dance peaks were smaller, less frequent and tended to coincide with, rather than to precede, foraging activity.  相似文献   

15.
Tandem running is a common recruitment strategy in ant species with small colony sizes. During a tandem run, an informed leader guides a usually naïve nestmate to a food source or a nest site. Some species perform tandem runs only during house hunting, suggesting that tandem running does not always improve foraging success in species known to use tandem running as a recruitment strategy, but more natural history information on tandem running under natural conditions is needed to better understand the adaptive significance of tandem recruitment in foraging. Studying wild colonies in Brazil, we for the first time describe tandem running in the ponerine ant Pachycondyla harpax (Fabricius). We asked if foragers perform tandem runs to carbohydrate- (honey) and protein-rich (cheese) food items. Furthermore, we tested whether the speed and success rate of tandem runs depend on the foraging distance. Foragers performed tandem runs to both carbohydrate food sources and protein-rich food items that exceed a certain size. The probability to perform a tandem run and the travelling speed increase with increasing foraging distances, which could help colonies monopolize more distant food sources in a competitive environment. Guiding a recruit to a food source is costly for leaders as ants are ~66% faster when travelling alone. If tandem runs break up (~23% of all tandem runs), followers do not usually discover the food source on their own but return to the nest. Our results show that tandem running to food sources is common in P. harpax, but that foragers modify their behaviour according to the type of food and its distance from the nest. Competition with other ants was intense and we discuss how tandem running in P. harpax might help colonies to build-up a critical number of ants at large food items that can then defend the food source against competitors.  相似文献   

16.
Hydrocarbons emitted by waggle-dancing honey bees are known to reactivate experienced foragers to visit known food sources. This study investigates whether these hydrocarbons also increase waggle-dance recruitment by observing recruitment and dancing behavior when the dance compounds are introduced into the hive. If the hydrocarbons emitted by waggle-dancing bees affect the recruitment of foragers to a food source, then the number of recruits arriving at a food source should be greater after introduction of dance compounds versus a pure-solvent control. This prediction was supported by the results of experiments in which recruits were captured at a feeder following introduction of dance-compounds into a hive. This study also tested two nonexclusive behavioral mechanism(s) by which the compounds might stimulate recruitment; 1) increased recruitment could occur by means of increasing the recruitment effectiveness of each dance and/or 2) increased recruitment could occur by increasing the intensity of waggle-dancing. These hypotheses were tested by examining video records of the dancing and recruitment behavior of individually marked bees following dance-compound introduction. Comparisons of numbers of dance followers and numbers of recruits per dance and waggle run showed no significant differences between dance-compound and solvent-control introduction, thus providing no support for the first hypothesis. Comparison of the number of waggle-dance bouts and the number of waggle runs revealed significantly more dancing during morning dance-compound introduction than morning solvent-control introduction, supporting the second hypothesis. These results suggest that the waggle-dance hydrocarbons play an important role in honey bee foraging recruitment by stimulating foragers to perform waggle dances following periods of inactivity.  相似文献   

17.
Honeybees have evolved numerous mechanisms for increasing colony-level foraging efficiency, mainly the combined system of scout-recruit division of labour and recruitment communication. A successful forager performs waggle dances on the surface of the comb where it interacts with nectar receivers and dance followers. A forager uses tremble dance when it experiences difficulty finding a receiver bee to unload food upon return to the hive. A bee colony containing numerous subfamilies may increase its efficiency in dance communication if dances are realized by particular groups of specialized individuals or subfamilies rather than by undifferentiated workers. In this study, we determined the subfamily frequencies of waggle and tremble dancers in a colony headed by a naturally mated queen, where the 17 subfamilies can be identified by microsatellite genetic markers. Our results demonstrate that a genetic component is associated with the dance communication in honeybees. More than half of the waggle dances and the tremble dances were performed by workers from only four subfamilies in each case.  相似文献   

18.
A honeybee colony is a superorganism that has evolved precise communication systems, which allow the colony to gather information from numerous individuals and coordinate its behavior. Alarm pheromones, such as isopentyl acetate (IPA), the main component of sting alarm pheromone, play a critical role in the coordination of individual behaviors as well as colony communication in honeybee colonies. In this study, honeybees (Apis mellifera ligustica and Apis cerana cerana) were exposed to relatively high levels of IPA at a foraging site (6–8 bee equivalents) and inside their colony (28–58 bee equivalents) to investigate the influence of alarm pheromones on foraging activity and hive flight activity. IPA reduced the number of bees that flew out the hive, foraged, and waggle danced. Under both contexts in the hive and at the food source, IPA can therefore inhibit honey bee foraging and foraging communication.  相似文献   

19.
Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We “eavesdropped” on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable.  相似文献   

20.
Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger‐sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony''s food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger‐sized bees were not more experienced than smaller‐sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large‐sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony''s life cycle and in changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号