首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.  相似文献   

2.
Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory.  相似文献   

3.
Donaldson DI  Petersen SE  Buckner RL 《Neuron》2001,31(6):1047-1059
We employed event-related fMRI to constrain cognitive accounts of memory retrieval. Studies of explicit retrieval reveal that lateral and medial parietal, dorsal middle frontal gyrus, and anterior prefrontal cortex respond more for studied than new words, reflecting a correlate of "retrieval success." Studies of implicit memory suggest left temporal cortex, ventral and dorsal inferior frontal gyrus respond less for studied than new words, reflecting a correlate of "conceptual priming." In the present study, responses for old and new items were compared during performance on explicit recognition (old/new judgement) and semantic (abstract/concrete judgement) tasks. Regions associated with priming were only modulated during the semantic task, whereas regions associated with retrieval success were modulated during both tasks. These findings constrain functional-anatomic accounts of the networks, suggesting that processes associated with priming do not support explicit recognition judgments.  相似文献   

4.

Background

Intentional forgetting refers to the surprising phenomenon that we can forget previously successfully encoded memories if we are instructed to do so. Here, we show that participants cannot only intentionally forget episodic memories but they can also mirror the “forgetting performance” of an observed model.

Methodology/Principal Findings

In four experiments a participant observed a model who took part in a memory experiment. In Experiment 1 and 2 observers saw a movie about the experiment, whereas in Experiment 3 and 4 the observers and the models took part together in a real laboratory experiment. The observed memory experiment was a directed forgetting experiment where the models learned two lists of items and were instructed either to forget or to remember the first list. In Experiment 1 and 3 observers were instructed to simply observe the experiment (“simple observation” instruction). In Experiment 2 and 4, observers received instructions aimed to induce the same learning goal for the observers and the models (“observation with goal-sharing” instruction). A directed forgetting effect (the reliably lower recall of to-be-forgotten items) emerged only when models received the “observation with goal-sharing” instruction (P<.001 in Experiment 2, and P<.05 in Experiment 4), and it was absent when observers received the “simple observation” instruction (P>.1 in Experiment 1 and 3).

Conclusion

If people observe another person with the same intention to learn, and see that this person is instructed to forget previously studied information, then they will produce the same intentional forgetting effect as the person they observed. This seems to be a an important aspect of human learning: if we can understand the goal of an observed person and this is in line with our behavioural goals then our learning performance will mirror the learning performance of the model.  相似文献   

5.
Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.  相似文献   

6.
People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject’s own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset), subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms), frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms) thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by top-down processing whereas the other-race effect is also influenced by extensive perceptual experience.  相似文献   

7.
Event-related potentials (ERP) were recorded in a recognition memory task in 5 healthy subjects and an amnesic patient. A list of high-imagery words with low probability in everyday language was presented visually for 200 ms each. A second list, consisting of 50% previously presented (`old') words and 50% `new' words was presented immediately after the first list. Old/new distinction was determined by the subject's motor response. For each subject single trial analysis of ERPs was performed. In each healthy subjects, correct old/new distinction was associated with significant ERP differences from 500 to 900 ms after stimulus onset. It was, therefore, assumed that task and recording procedures were appropriate for the study of ERPs with recognition memory. The main finding is a dissociation between brain activity and behaviour with old/new distinction in the patient with amnesic syndrome. Frequently, the patient incorrectly classified previously shown words (`old' words) to be presented for the first time (`new'). But ERP showed that brain processing of `old' words which had incorrectly been classified to be `new' is different from correctly classified new words. ERP differences were significant between 900 and 1200 ms after stimulus presentation. These data indicate preserved memory functions which are not assessed at the behavioural level in the memory recognition task.  相似文献   

8.
Prior semantic processing can enhance subsequent picture naming performance, yet the neurocognitive mechanisms underlying this effect and its longevity are unknown. This functional magnetic resonance imaging study examined whether different neurological mechanisms underlie short-term (within minutes) and long-term (within days) facilitation effects from a semantic task in healthy older adults. Both short- and long-term facilitated items were named significantly faster than unfacilitated items, with short-term items significantly faster than long-term items. Region of interest results identified decreased activity for long-term facilitated items compared to unfacilitated and short-term facilitated items in the mid-portion of the middle temporal gyrus, indicating lexical-semantic priming. Additionally, in the whole brain results, increased activity for short-term facilitated items was identified in regions previously linked to episodic memory and object recognition, including the right lingual gyrus (extending to the precuneus region) and the left inferior occipital gyrus (extending to the left fusiform region). These findings suggest that distinct neurocognitive mechanisms underlie short- and long-term facilitation of picture naming by a semantic task, with long-term effects driven by lexical-semantic priming and short-term effects by episodic memory and visual object recognition mechanisms.  相似文献   

9.
Herbert C  Kübler A 《PloS one》2011,6(10):e25574
The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level) and prime-target expressions (word level). Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences), target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients.  相似文献   

10.
A fundamental challenge in the study of learning and memory is to understand the role of existing knowledge in the encoding and retrieval of new episodic information. The importance of prior knowledge in memory is demonstrated in the congruency effect—the robust finding wherein participants display better memory for items that are compatible, rather than incompatible, with their pre-existing semantic knowledge. Despite its robustness, the mechanism underlying this effect is not well understood. In four studies, we provide evidence that demonstrates the privileged explanatory power of the elaboration-integration account over alternative hypotheses. Furthermore, we question the implicit assumption that the congruency effect pertains to the truthfulness/sensibility of a subject-predicate proposition, and show that congruency is a function of semantic relatedness between item and context words.  相似文献   

11.
Behavioral studies of spoken word memory have shown that context congruency facilitates both word and source recognition, though the level at which context exerts its influence remains equivocal. We measured event-related potentials (ERPs) while participants performed both types of recognition task with words spoken in four voices. Two voice parameters (i.e., gender and accent) varied between speakers, with the possibility that none, one or two of these parameters was congruent between study and test. Results indicated that reinstating the study voice at test facilitated both word and source recognition, compared to similar or no context congruency at test. Behavioral effects were paralleled by two ERP modulations. First, in the word recognition test, the left parietal old/new effect showed a positive deflection reflective of context congruency between study and test words. Namely, the same speaker condition provided the most positive deflection of all correctly identified old words. In the source recognition test, a right frontal positivity was found for the same speaker condition compared to the different speaker conditions, regardless of response success. Taken together, the results of this study suggest that the benefit of context congruency is reflected behaviorally and in ERP modulations traditionally associated with recognition memory.  相似文献   

12.
Though the hippocampus typically has been implicated in processes related to associative binding, special types of associations – such as those created by integrative mental imagery – may be supported by processes implemented in other medial temporal-lobe or sensory processing regions. Here, we investigated what neural mechanisms underlie the formation and subsequent retrieval of integrated mental images, and whether those mechanisms differ based on the emotionality of the integration (i.e., whether it contains an emotional item or not). Participants viewed pairs of words while undergoing a functional MRI scan. They were instructed to imagine the two items separately from one another (“non-integrative” study) or as a single, integrated mental image (“integrative” study). They provided ratings of how successful they were at generating vivid images that fit the instructions. They were then given a surprise associative recognition test, also while undergoing an fMRI scan. The cuneus showed parametric correspondence to increasing imagery success selectively during encoding and retrieval of emotional integrations, while the parahippocampal gyri and prefrontal cortices showed parametric correspondence during the encoding and retrieval of non-emotional integrations. Connectivity analysis revealed that selectively during negative integration, left amygdala activity was negatively correlated with frontal and hippocampal activity. These data indicate that individuals utilize two different neural routes for forming and retrieving integrations depending on their emotional content, and they suggest a potentially disruptive role for the amygdala on frontal and medial-temporal regions during negative integration.  相似文献   

13.
Previous studies have shown that the opinion of confederates in a group influences recognition memory, but inconsistent results have been obtained concerning the question of whether recognition of items as old and new are affected similarly, possibly because only one or two confederates are present during the recognition phase. Here, we present data from a study where recognition of novel faces was tested in the presence of four confederates. In a long version of this experiment, recognition of items as old and new was similarly affected by group responses. However, in the short version, recognition of old items depended proportionally on the number of correct group responses, while rejection of new items only decreased significantly when all confederates gave an incorrect response. These findings indicate that differential effects of social conformity on recognition of items as old and new occur in situations with an intermediate level of group pressure.  相似文献   

14.
Functional neuroimaging techniques using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have provided new insights in our understanding of brain function from the molecular to the systems level. While subtraction strategy based data analyses have revealed the involvement of distributed brain regions in memory processes, covariance analysis based data analysis strategies allow functional interactions between brain regions of a neuronal network to be assessed. The focus of this chapter is to (1) establish the functional topography of episodic and working memory processes in young and old normal volunteers, (2) to assess functional interactions between modules of networks of brain regions by means of covariance based analyses and systems level modelling and (3) to relate neuroimaging data to the underpinning neural networks. Male normal young and old volunteers without neurological or psychiatric illness participated in neuroimaging studies (PET, fMRI) on working and episodic memory. Distributed brain areas are involved in memory processes (episodic and working memory) in young volunteers and show much of an overlap with respect to the network components. Systems level modelling analyses support the hypothesis of bihemispheric, asymmetric networks subserving memory processes and revealed both similarities in general and differences in the interactions between brain regions during episodic encoding and retrieval as well as working memory. Changes in memory function with ageing are evident from studies in old volunteers activating more brain regions compared to young volunteers and revealing more and stronger influences of prefrontal regions. We finally discuss the way in which the systems level models based on PET and fMRI results have implications for the understanding of the underlying neural network functioning of the brain.  相似文献   

15.
Griebel U  Oller DK 《PloS one》2012,7(2):e30182
Rapid vocabulary learning in children has been attributed to "fast mapping", with new words often claimed to be learned through a single presentation. As reported in 2004 in Science a border collie (Rico) not only learned to identify more than 200 words, but fast mapped the new words, remembering meanings after just one presentation. Our research tests the fast mapping interpretation of the Science paper based on Rico's results, while extending the demonstration of large vocabulary recognition to a lap dog. We tested a Yorkshire terrier (Bailey) with the same procedures as Rico, illustrating that Bailey accurately retrieved randomly selected toys from a set of 117 on voice command of the owner. Second we tested her retrieval based on two additional voices, one male, one female, with different accents that had never been involved in her training, again showing she was capable of recognition by voice command. Third, we did both exclusion-based training of new items (toys she had never seen before with names she had never heard before) embedded in a set of known items, with subsequent retention tests designed as in the Rico experiment. After Bailey succeeded on exclusion and retention tests, a crucial evaluation of true mapping tested items previously successfully retrieved in exclusion and retention, but now pitted against each other in a two-choice task. Bailey failed on the true mapping task repeatedly, illustrating that the claim of fast mapping in Rico had not been proven, because no true mapping task had ever been conducted with him. It appears that the task called retention in the Rico study only demonstrated success in retrieval by a process of extended exclusion.  相似文献   

16.
Age-related changes in autobiographical memory (AM) recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM) elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC) during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural reorganization in aging.  相似文献   

17.
Gottfried JA  Smith AP  Rugg MD  Dolan RJ 《Neuron》2004,42(4):687-695
Episodic memory is often imbued with multisensory richness, such that the recall of an event can be endowed with the sights, sounds, and smells of its prior occurrence. While hippocampus and related medial temporal structures are implicated in episodic memory retrieval, the participation of sensory-specific cortex in representing the qualities of an episode is less well established. We combined functional magnetic resonance imaging (fMRI) with a cross-modal paradigm, where objects were presented with odors during memory encoding. We then examined the effect of odor context on neural responses at retrieval when these same objects were presented alone. Primary olfactory (piriform) cortex, as well as anterior hippocampus, was activated during the successful retrieval of old (compared to new) objects. Our findings indicate that sensory features of the original engram are preserved in unimodal olfactory cortex. We suggest that reactivation of memory traces distributed across modality-specific brain areas underpins the sensory qualities of episodic memories.  相似文献   

18.
Memory for events and their spatial context: models and experiments   总被引:6,自引:0,他引:6  
The computational role of the hippocampus in memory has been characterized as: (i) an index to disparate neocortical storage sites; (ii) a time-limited store supporting neocortical long-term memory; and (iii) a content-addressable associative memory. These ideas are reviewed and related to several general aspects of episodic memory, including the differences between episodic, recognition and semantic memory, and whether hippocampal lesions differentially affect recent or remote memories. Some outstanding questions remain, such as: what characterizes episodic retrieval as opposed to other forms of read-out from memory; what triggers the storage of an event memory; and what are the neural mechanisms involved? To address these questions a neural-level model of the medial temporal and parietal roles in retrieval of the spatial context of an event is presented. This model combines the idea that retrieval of the rich context of real-life events is a central characteristic of episodic memory, and the idea that medial temporal allocentric representations are used in long-term storage while parietal egocentric representations are used to imagine, manipulate and re-experience the products of retrieval. The model is consistent with the known neural representation of spatial information in the brain, and provides an explanation for the involvement of Papez''s circuit in both the representation of heading direction and in the recollection of episodic information. Two experiments relating to the model are briefly described. A functional neuroimaging study of memory for the spatial context of life-like events in virtual reality provides support for the model''s functional localization. A neuropsychological experiment suggests that the hippocampus does store an allocentric representation of spatial locations.  相似文献   

19.
Camera traps have been widely used for wildlife biodiversity monitoring, providing abundant ecological data. Manually classifying such abundant images is time-consuming and labor-intensive. Existing deep learning methods solve this problem for a fixed set of predefined wildlife species. The model trained on such sets cannot be applied to new wildlife species. Retraining models on new wildlife species can lead to catastrophic forgetting. Thus, in this work, we propose a class incremental learning method to identify new wildlife species. Our method employs a novel adaptive exemplar assignment (AEA) strategy with dynamic exemplar amounts to adapt to new species while alleviating the forgetting of old ones. Due to memory constraints, the data imbalance between limited exemplars and new species data can lead to class bias. We mitigate it by performing center vector retrieval (CVR) to classify samples in feature space and bypass the biased linear classifier. In addition, we propose two variants of CVR that incorporate the advantage of the linear classifier to further improve the performance. By using only 4% of old species data, our method achieves 77.09% accuracy at a low computational resource for recognition. Through extensive experiments and ablations, we demonstrate the superiority of our proposed approach over state-of-the-art methods. This method facilitates wildlife monitoring, biodiversity conservation, and ecological assessment.  相似文献   

20.
Ranganath C  Paller KA 《Neuron》1999,22(3):605-613
To assess the role of prefrontal cortex in retrieval and address the controversy about whether prefrontal retrieval operations are engaged only following successful retrieval, we recorded event-related brain potentials during two recognition tests with differing demands on retrieval effort. Both tests included object drawings that were (1) identical to those studied, (2) the same but with altered aspect ratios, and (3) previously unseen. Instructions were to respond "old" only if drawings were not modified (specific test) or regardless of modifications (general test). Frontal potentials were enhanced during the specific relative to the general test for all three types of drawings. We conclude that these potentials reflected differential engagement of strategic retrieval, that this function relied on left prefrontal cortex, and that it was not contingent on successful retrieval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号