共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuning Xiong Sahil Khanna Adrienne L. Grzenda Olga F. Sarmento Phyllis A. Svingen Gwen A. Lomberk Raul A. Urrutia William A. Faubion Jr. 《The Journal of biological chemistry》2012,287(41):34372-34385
Inducible gene expression underlies the epigenetically inherited differentiation program of most immune cells. We report that the promoter of the FOXP3 gene possesses two distinct functional states: an “off state” mediated by the polycomb histone methyltransferase complex and a histone acetyltransferase-dependent “on state.” Regulating these states is the presence of a Kruppel-like factor (KLF)-containing Polycomb response element. In the KLF10−/− mouse, the FOXP3 promoter is epigenetically silenced by EZH2 (Enhancer of Zeste 2)-mediated trimethylation of Histone 3 K27; thus, impaired FOXP3 induction and inappropriate adaptive T regulatory cell differentiation results in vitro and in vivo. The epigenetic transmittance of adaptive T regulatory cell deficiency is demonstrated throughout more than 40 generations of mice. These results provide insight into chromatin remodeling events key to phenotypic features of distinct T cell populations. 相似文献
2.
Julia Yu Fong Chang Cong Wang Junchen Liu Yanqing Huang Chengliu Jin Chaofeng Yang Bo Hai Fei Liu Rena N. D'Souza Wallace L. McKeehan Fen Wang 《The Journal of biological chemistry》2013,288(40):28952-28961
A constant supply of epithelial cells from dental epithelial stem cell (DESC) niches in the cervical loop (CL) enables mouse incisors to grow continuously throughout life. Elucidation of the cellular and molecular mechanisms underlying this unlimited growth potential is of broad interest for tooth regenerative therapies. Fibroblast growth factor (FGF) signaling is essential for the development of mouse incisors and for maintenance of the CL during prenatal development. However, how FGF signaling in DESCs controls the self-renewal and differentiation of the cells is not well understood. Herein, we report that FGF signaling is essential for self-renewal and the prevention of cell differentiation of DESCs in the CL as well as in DESC spheres. Inhibiting the FGF signaling pathway decreased proliferation and increased apoptosis of the cells in DESC spheres. Suppressing FGFR or its downstream signal transduction pathways diminished Lgr5-expressing cells in the CL and promoted cell differentiation both in DESC spheres and the CL. Furthermore, disruption of the FGF pathway abrogated Wnt signaling to promote Lgr5 expression in DESCs both in vitro and in vivo. This study sheds new light on understanding the mechanism by which the homeostasis, expansion, and differentiation of DESCs are regulated. 相似文献
3.
Domenick A. Prosdocimo Priti Anand Xudong Liao Han Zhu Shamanthika Shelkay Pedro Artero-Calderon Lilei Zhang Jacob Kirsh D'Vesharronne Moore Mariana G. Rosca Edwin Vazquez Janos Kerner Kemal M. Akat Zev Williams Jihe Zhao Hisashi Fujioka Thomas Tuschl Xiaodong Bai P. Christian Schulze Charles L. Hoppel Mukesh K. Jain Saptarsi M. Haldar 《The Journal of biological chemistry》2014,289(9):5914-5924
4.
5.
Katrin Sobel Katalin Menyhart Nina Killer Bérengère Renault Yasmina Bauer Rolf Studer Beat Steiner Martin H. Bolli Oliver Nayler John Gatfield 《The Journal of biological chemistry》2013,288(21):14839-14851
Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways. 相似文献
6.
Cristina Ferreras Graham Rushton Claire L. Cole Muhammad Babur Brian A. Telfer Toin H. van Kuppevelt John M. Gardiner Kaye J. Williams Gordon C. Jayson Egle Avizienyte 《The Journal of biological chemistry》2012,287(43):36132-36146
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. 相似文献
7.
Joongho Shin Azadeh Carr Georgia A. Corner Lars T?gel Mercedes Dávaos-Salas Hoanh Tran Anderly C. Chueh Sheren Al-Obaidi Fiona Chionh Naseem Ahmed Daniel D. Buchanan Joanne P. Young Madhu S. Malo Richard A. Hodin Diego Arango Oliver M. Sieber Leonard H. Augenlicht Amardeep S. Dhillon Thomas K. Weber John M. Mariadason 《The Journal of biological chemistry》2014,289(36):25306-25316
8.
Morgane Gourlaouen Jonathan C. Welti Naveen S. Vasudev Andrew R. Reynolds 《The Journal of biological chemistry》2013,288(11):7467-7480
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis. 相似文献
9.
Sunmi Seok Deepthi Kanamaluru Zhen Xiao Daniel Ryerson Sung-E Choi Kelly Suino-Powell H. Eric Xu Timothy D. Veenstra Jongsook Kim Kemper 《The Journal of biological chemistry》2013,288(32):23252-23263
Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism. 相似文献
10.
11.
Abd A. Alhasan Julia Spielhofer Marion Kusche-Gullberg John A. Kirby Simi Ali 《The Journal of biological chemistry》2014,289(29):20295-20306
Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection. 相似文献
12.
《Bioorganic & medicinal chemistry》2014,22(19):5168-5181
Sphingosine-1-phosphate (S1P) receptors play major roles in cardiovascular, immunological and neurological diseases. The recent approval of the sphingolipid drug Fingolimod (Gilenya®), a sphingosine-1-phosphate agonist for relapsing multiple sclerosis, in 2010 exemplifies the potential for targeting sphingolipids for the treatment of human disorders. Moreover, non-invasive in vivo imaging of S1P receptors that are not available till now would contribute to the understanding of their role in specific pathologies and is therefore of preclinical interest. Based on fluorinated analogues of the S1P1 receptor antagonist W146 showing practically equal in vitro potency as the lead structure, the first S1P receptor antagonist [18F]-radiotracer has been synthesized and tested for in vivo imaging of the S1P1 receptor using positron emission tomography (PET). Though the tracer is serum stable, initial in vivo images show fast metabolism and subsequent accumulation of free [18F]fluoride in the bones. 相似文献
13.
14.
Yoshifumi Mori Taku Saito Song Ho Chang Hiroshi Kobayashi Christoph H. Ladel Hans Guehring Ung-il Chung Hiroshi Kawaguchi 《The Journal of biological chemistry》2014,289(14):10192-10200
To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. 相似文献
15.
Shufang Wu Tal Grunwald Alexei Kharitonenkov Julie Dam Ralf Jockers Francesco De Luca 《The Journal of biological chemistry》2013,288(38):27375-27383
16.
Baron O Förthmann B Lee YW Terranova C Ratzka A Stachowiak EK Grothe C Claus P Stachowiak MK 《The Journal of biological chemistry》2012,287(24):19827-19840
17.
Olivier Cases Aitana Perea-Gomez Diego P. Aguiar Anders Nykjaer Sabine Amsellem Jacqueline Chandellier Muriel Umbhauer Silvia Cereghini Mette Madsen Jér?me Collignon Pierre Verroust Jean-Fran?ois Riou Sophie E. Creuzet Renata Kozyraki 《The Journal of biological chemistry》2013,288(23):16655-16670
Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity. 相似文献
18.
Ilker Karaca Irfan Y. Tamboli Konstantin Glebov Josefine Richter Lisa H. Fell Marcus O. Grimm Viola J. Haupenthal Tobias Hartmann Markus H. Gr?ler Gerhild van Echten-Deckert Jochen Walter 《The Journal of biological chemistry》2014,289(24):16761-16772
Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca2+ from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP. 相似文献
19.
20.
Srimathi Srinivasan Rosana D. Meyer Ricardo Lugo Nader Rahimi 《The Journal of biological chemistry》2013,288(32):23171-23181
Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function. 相似文献