首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study describes the ultrastructural characteristics of spermatogenesis, spermiogenesis, and spermatozoa in specimens of siluriform taxa Neoplecostominae, Hypoptopomatinae, Otothyrinae, Loricariinae, and Hypostominae. Our data show that the characteristics of spermatogenesis and spermiogenesis and spermatozoa ultrastructure of Neoplecostominae are more common to Hypoptopomatinae and Otothyrinae than to Loricariinae and Hypostominae. Furthermore, Loricariinae and Hypostominae have more characteristics in common than with any other group of Loricariidae. These data reinforce the phylogenetic hypotheses of relationships among the subfamilies of Loricariidae. Considering the available data in Loricarioidei, Loricariidae presents ultrastructural characteristics of spermatogenesis and spermiogenesis that are also observed in Astroblepidae, its sister group. However, the most of the characteristics of spermatozoa ultrastructure found in Astroblepidae are also observed in Scoloplacidae, the sister group of a clade composed of Astroblepidae and Loricariidae.  相似文献   

2.
The Neotropics possess the greatest freshwater fish diversity of the world, rendering the study of their evolutionary history extremely challenging. Loricariidae catfishes are one of the most diverse components of the Neotropical ichthyofauna and despite a long history of classification, major issues still need elucidation. Based on a nuclear gene, we present a robust phylogeny of two former loricariid subfamilies: Hypoptopomatinae and Neoplecostominae. Our results show that Neoplecostominae is nested within Hypoptopomatinae, and is the sister group to the former Otothyrini tribe. According to our results, supplemented by morphological observations, we erect two new subfamilies, the Otothyrinae and a new Hypoptopomatinae, and modify the Neoplecostominae by including the genus Pseudotocinclus. The uncovered evolutionary relationships allow a detailed analysis of their historical biogeography. We tested two Dispersal-Extinction-Cladogenesis models for inferring the distribution range evolution of the new subfamilies, and show that the model having no constrains performs better than a model constraining long-range dispersal. The Maximum Likelihood reconstructions of ancestral ranges showed a marked division between the Amazonian origin of the Hypoptopomatinae and the eastern coastal Brazil+Upper Paraná origin of the Neoplecostominae and Otothyrinae. Markedly few instances of dispersal across the border separating the Amazon basin and the Paraná-Paraguay+eastern coastal Brazil+Uruguay were reconstructed. This result is in clear contrast with the historical biogeography of many Neotropical fishes, including other Loricariidae. Part of the dispersal limitation may be explained by divergent ecological specialization: lowland rivers versus mountain streams habitats. Moreover, because most species of the new subfamilies are small, we hypothesize that body size-related effects might limit their dispersal, like predation and energetic cost to migration. Finally, morphological and anatomical features are presented that limit or, to the contrary, enhance dispersal capability in these small and fascinating catfishes.  相似文献   

3.
Hypoptopomatinae and Neoplecostominae include about 250 valid species, a substantial portion of loricariid catfishes. Although the relationships among the members of these subfamilies have been inferred by many authors, the most recent hypotheses based on morphological and molecular data differ widely. Herein, we provide new data on the morphology of the central nervous system, and evaluate the usefulness of these characters in phylogenetic inference. To accomplish this, we characterized the gross brain morphology of those catfishes, and analyzed 54 neuroanatomical characters in a total of 40 terminal taxa representing Hypoptopomatinae and Neoplecostominae, and also members of Delturinae and Hypostominae as outgroups. Hypoptopomatinae and Neoplecostominae are recovered as separate subfamilies, and most of our results are compatible with morphology‐based analyses. We conclude that neuroanatomy provides an informative source of new characters with strong phylogenetic signal at all recovered taxonomic levels.  相似文献   

4.
Sargassum is a cosmopolitan brown algal genus spanning the three ocean basins of the Atlantic, Pacific and Indian Oceans, inhabiting temperate, subtropical and tropical habitats. Sargassum has been postulated to have originated in the Oligocene epoch approximately 30 mya according to a broad phylogenetic analysis of brown macroalgae, but its diversification to become one of the most widespread and speciose macroalgal genera remains unclear. Here, we present a Bayesian molecular clock study, which analyzed data from the order Fucales of the brown algal crown radiation (BACR) group to reconstruct a time-calibrated phylogeny of the Sargassum clade. Our phylogeny included a total of 120 taxa with 99 Sargassum species sampled for three molecular markers – ITS-2, cox3 and rbcLS – calibrated with an unambiguous Sargassaceae fossil from between the lower and middle Miocene. The analysis revealed a much later origin of Sargassum than expected at about 6.7 mya, with the genus diversifying since approximately 4.3 mya. Current geographic distributions of Sargassum species were then analyzed in conjunction with the time-calibrated phylogeny using the dispersal-extinction-cladogenesis (DEC) model to estimate ancestral ranges of clades in the genus. Results strongly support origination of Sargassum in the Central Indo-Pacific (CIP) region with subsequent independent dispersal events into other marine realms. The longer history of diversification in the ancestral CIP range could explain the much greater diversity there relative to other marine areas today. Analyses of these dynamic processes, when fine-tuned to a higher spatial resolution, enable the identification of evolutionary hotspots and provide insights into long-term dispersal patterns.  相似文献   

5.
In order to develop better insights into biogeographic patterns of eastern Asian and North American disjunct plant genera, sequences of nuclear ribosomal DNA internal transcribed spacer (nr DNA ITS) region were used to estimate interspecific relationships of Thuja L. (Cupressaceae) and infer its biogeography based on the phylogeny. According to the phylogenetic analysis, two clades were recognized. The first clade included Thuja plicata D. Don (western North America) and T. koraiensis Nakai (northeastern Asia), and the second one contained T. occidentalis (Gord.) Carr. (Japan). The ancestral area of Thuja was inferred to be eastern Asia, and two dispersal events were responsible for the modern distribution of Thuja in North America. Both the North Atlantic land bridge and Bering land bridge were possible routes for the migration of ancestral populations to North America.  相似文献   

6.
Species of Fluviphylax are widely distributed over the Amazon and Orinoco river drainages and are among the smallest fish in the neotropics, inhabiting areas near the margin of slow-flowing clear and black water streams and lakes. Here, we present the first multigene molecular phylogeny of Fluviphylax, including all five nominal species of Fluviphylax and three undescribed species. The analysis included fragments of one mitochondrial and five nuclear genes, totaling 5880 bp. The dataset was analyzed using maximum parsimony, maximum likelihood, and Bayesian inference approaches providing high-supported well-solved trees. A time-calibrated analysis was performed providing information on the origin and diversification of the miniature genus in the Amazon. We estimate that Fluviphylax lineage splits from its sister group, the Anablepidae and Poeciliidae (Poeciliinae sensu Parenti, 1981), during the Late Eocene, about 36.6 Mya; but lineage diversification started only in the Middle Miocene, about 16 Mya, during the formation of the Pebas system. Subsequent splits within Fluviphylax occurred in the Late Miocene–Pliocene, between 10 and 6 Mya and during the Pliocene, and were probably influenced by paleogeographical events such as the breaching of the Purus arch, the rise of the Vaupés arch, the uplift of the Fitzcarrald arch, and the capture of the Contigo and Uraricoera river drainages by the Branco River. The present time-calibrated analysis provides the first insight on the evolution of one of the smallest vertebrate taxa in the Amazon and Orinoco river drainages.  相似文献   

7.
? Premise of the study: The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution. ? Methods: We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses. We used Bayes Multistate to infer ancestral geographic distributions at well-supported nodes of the phylogeny. The Shimodaira-Hasegawa (SH) test distinguished among hypotheses of single or multiple transitions from South America to North America, and tristyly to distyly. ? Key results: The American bulb-bearing Oxalis include sampled members of sections Ionoxalis and Pseudobulbosae and are derived from a larger clade that includes members of sections Palmatifoliae, Articulatae, and the African species. The American bulb-bearing Oxalis comprise two clades: one distributed in SE South America and the other in the Andes and North America. An SH test supports multiple dispersals to North America. Most sampled distylous species form a single clade, but at least two other independent distylous lineages are supported by the topologies and SH tests. ? Conclusions: Phylogenetic results suggest the American bulb-bearing Oxalis originated in southern South America, dispersed repeatedly to North America, and had multiple transitions from tristyly to distyly. This study adds to our understanding of biogeographic history and breeding system evolution and provides a foundation for more precise inferences about the study group.  相似文献   

8.
Restriction-endonuclease-site variation of mitochondrial DNA (mtDNA) was used to investigate patterns of geographic and phylogenetic divergence within the rodent genus Onychomys. Onychomys has occupied arid habitats in the western North American deserts, shrub-steppes, and grasslands since the late Tertiary. A phylogenetic analysis of the total mtDNA restriction-site variation throughout the range of Onychomys suggests that the distribution of this genus has been affected by the same Quaternary pluvial-interpluvial climatic fluctuations that have resulted in the periodic fragmentation of arid habitats in western North America. Onychomys mtDNA haplotypes define at least five discrete geographical subsets, suggesting that there are five areas of endemism for biota restricted to arid and semiarid habitats in North America. The mtDNA-haplotype phylogeny can be used to infer an hypothesis of historical relationships among the five areas of endemism as follows: ([{(Wyoming Basin + Interior Plains + Colorado Plateaus) + (Columbia Basin + Great Basin)} + Gulf Coastal Plain] + Chihuahuan) + Western Deserts. The results of this study point to the potential use of mtDNA-haplotype phylogenies to reconstruct historical biogeographic events in Quaternary time. The utility of mtDNA variation depends in part on the ecology and distribution of the species being examined. Therefore, our hypothesized area cladogram can be tested by investigating regional relationships in other western North American taxa with distributions similar to Onychomys.  相似文献   

9.
Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program *BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.  相似文献   

10.
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region.  相似文献   

11.
The Amazonia and the Atlantic Forest, separated by the diagonal of open formations, are two ecoregions that comprise the most diverse tropical forests in the world. The Sphaenorhynchini tribe is among the few tribes of anurans that occur in both rainforests, and their historical biogeographic have never been proposed. In this study, we infer a dated phylogeny for the species of the Sphaenorhynchini and we reconstructed the biogeographic history describing the diversification chronology, and possible patterns of dispersion and vicariance, providing information about how orogeny, forest dynamics and allopatric speciation affected their evolution in South America. We provided a dated phylogeny and biogeography study for the Sphaenorhynchini tribe using mitochondrial and nuclear genes. We analyzed 41 samples to estimate the ancestral areas using biogeographical analysis based on the estimated divergence times and the current geographical ranges of the species of Sphaenorhynchini. We recovered three characteristic clades that we recognize as groups of species (S. lacteus, S. planicola, and S. platycephalus groups), with S. carneus and G. pauloalvini being the sister taxa of all other species from the tribe. We found that the diversification of the tribe lineages coincided with the main climatic and geological factors that shaped the Neotropical landscape during the Cenozoic. The most recent common ancestor of the Sphaenorhynchini species emerged in the North of the Atlantic Forest and migrated to the Amazonia in different dispersion events that occurred during the connections between these ecoregions. This is the first large‐scale study to include an almost complete calibrated phylogeny of Sphaenorhynchini, presenting important information about the evolution and diversification of the tribe. Overall, we suggest that biogeographic historical of Sphaenorhynchini have resulted from a combination of repeated range expansion and contraction cycles concurrent with climate fluctuations and dispersal events between the Atlantic Forest and Amazonia.  相似文献   

12.
ABSTRACT: BACKGROUND: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. RESULTS: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia connection, and later became extinct in North America. They only began substantive diversification during the Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. CONCLUSIONS: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.  相似文献   

13.
Aim To use the method of parsimony analysis of endemism to identify areas of endemism for passerine birds in the Atlantic Forest, South America, and to compare the locations of these areas with areas previously identified for birds as well as other taxa. Location The Atlantic Forest, eastern South America. Methods We analysed a matrix composed of the presence (1) or absence (0) of 140 endemic species in 24 quadrats of 1 × 1 degree distributed along the Atlantic Forest to find the most parsimonious area cladogram. Results Fourteen most parsimonious cladograms were found and then summarized in a single consensus tree. Four areas of endemism were identified: Pernambuco, Central Bahia, Coastal Bahia, and Serra do Mar. Main conclusions Avian areas of endemism in the Atlantic Forest have significant generality, as they are highly nonrandom and congruent with those of other groups of organisms. A first hypothesis about the historical relationships among the four areas of avian endemism in the Atlantic Forest is delineated. There is a basal dichotomy among areas of endemism in the Atlantic Forest, with Pernambuco forming a northern cluster and Coastal Bahia, Central Bahia and Serra do Mar comprising a southern cluster. Within the southern cluster, Central Bahia and Serra do Mar are more closely related to each other than to Coastal Bahia.  相似文献   

14.
The Atlantic Forest biodiversity hotspot in eastern South America has been the focus of several phylogeographic studies concerning relationships between populations and areas and how taxa respond to environmental changes. We infer and compare the demographic and biogeographic histories of two didelphid marsupial species, Gracilinanus microtarsus and Marmosops incanus, from the Atlantic Forest of eastern Brazil to determine how these species responded to environmental changes over time, using mitochondrial and nuclear DNA sequences. We found great intraspecific genetic divergence in both species and a strong geographic structure related to similar and spatially cohesive groups within each species. These groups are consistent with the same topographical barriers, such as mountains and river valleys. Intraspecific clades are very old, dating back to a period of tectonic activities in the Neogene (5.39–8.57 Mya). Changes in the environment over the last 7 million years lead to fairly concordant demographic changes in both marsupial species, including population expansion during the last glacial maximum (ca. 21,000 years ago) or last interglacial (ca. 120,000 years ago) or both. These results do not fit the Pleistocene refuge hypothesis as an explanation of the historical biogeography and diversification of both species in the Atlantic Forest, but are compatible with the Atlantis Forest hypothesis.  相似文献   

15.
Rapateaceae (16 genera, approximately 100 species) is largely restricted to the tepuis and sandplains of the Guayana Shield in northern South America, with Maschalocephalus endemic to West Africa. The family has undergone extensive radiation in flower form, leaf shape, habit, and habitat. To analyze the evolution of these distributions and traits, we derived a molecular phylogeny for representatives of 14 genera, based on sequence variation in the chloroplast-encoded ndhF gene. The lowland subfamily Rapateoideae is paraphyletic and includes the largely montane subfamily Saxofridericioideae as a monophyletic subset. Overall, the morphological/anatomical data differ significantly from ndhF sequences in phylogenetic structure, but show a high degree of concordance with the molecular tree in three of four tribes. Branch lengths are consistent with the operation of a molecular clock. Maschalocephalus diverges only slightly from other Monotremae: it is the product of relatively recent, long-distance dispersal, not continental drift--only its habitat atop rifted, nutrient-poor sandstones is vicariant. The family appears to have originated approximately 65 Mya in inundated lowlands of the Guayana Shield, followed by: (1) wide geographic spread of lowland taxa along riverine corridors; (2) colonization of Amazonian white-sand savannas in the western Shield; (3) invasion of tepui habitats with frequent speciation, evolution of narrow endemism, and origin of hummingbird pollination in the western Shield; and (4) reinvasion of lowland white-sand savannas. The apparent timing of speciation in the Stegolepis alliance about 6-12 Mya occurred long after the tepuis began to be dissected from each other as the Atlantic rifted approximately 90 Mya. Given the narrow distributions of most montane taxa, this suggests that infrequent long-distance dispersal combined with vicariance accounts for speciation atop tepuis in the Stegolepis alliance.  相似文献   

16.
The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary origin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/Central America. Loxosceles are also diverse in North America and the West Indies, and have species described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phylogenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and monophyletic New World Loxosceles within which an Old World species group that includes L. rufescens is derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a land bridge predating the modern Isthmus of Panama.  相似文献   

17.
Fossils, molecules, divergence times, and the origin of lissamphibians   总被引:6,自引:0,他引:6  
A review of the paleontological literature shows that the early dates of appearance of Lissamphibia recently inferred from molecular data do not favor an origin of extant amphibians from temnospondyls, contrary to recent claims. A supertree is assembled using new Mesquite modules that allow extinct taxa to be incorporated into a time-calibrated phylogeny with a user-defined geological time scale. The supertree incorporates 223 extinct species of lissamphibians and has a highly significant stratigraphic fit. Some divergences can even be dated with sufficient precision to serve as calibration points in molecular divergence date analyses. Fourteen combinations of minimal branch length settings and 10 random resolutions for each polytomy give much more recent minimal origination times of lissamphibian taxa than recent studies based on a phylogenetic analyses of molecular sequences. Attempts to replicate recent molecular date estimates show that these estimates depend strongly on the choice of calibration points, on the dating method, and on the chosen model of evolution; for instance, the estimate for the date of the origin of Lissamphibia can lie between 351 and 266 Mya. This range of values is generally compatible with our time-calibrated supertree and indicates that there is no unbridgeable gap between dates obtained using the fossil record and those using molecular evidence, contrary to previous suggestions.  相似文献   

18.
Question: Can the geographic patterning of endemic plant species inform reserve selection in a region of high endemism? Location: The Southeastern Coastal Plain of North America, focusing primarily on the imperiled longleaf pine (Pinus palustris P. Miller) ecosystem. Methods: We documented the high level of plant endemism in the region, and characterized the endemic taxa into distributional subregions. Results: A total of 1630 plant taxa are endemic to the Coastal Plain, a large proportion of which are endemic to phytogeographical subregions within the Coastal Plain, with particularly large numbers of narrow endemics occurring in the East Gulf Coastal Plain and Florida Peninsula. Conclusions: This pattern of local endemism presents challenges in conserving the full biota of the region: a reserve system focusing on few and large conservation areas has theoretical benefits for long‐term management and viability, but will fail to capture many local endemics. We propose that the dispersed distribution of endemic species will require a mixture of large core reserves and smaller satellite reserves.  相似文献   

19.
Aim The closure of the Central American land‐bridge connection between North and South America 3.5 million years ago was a major biogeographic event that allowed considerable interchange of the previously isolated faunas of these continents. However, the role that this connection may have had in diversification of North and South American faunas is less well understood. The goal of this study was to evaluate the potential role of the formation of this land connection in generating diversity, through repeated rare dispersal events followed by isolation. Location North and South America. Methods We evaluated the role of the Central American land‐bridge connection in avian diversification using a molecular phylogeny based on four gene regions for mid‐sized New World doves. Diversification events were dated using a Bayesian relaxed clock analysis and internal calibration points for endemic island taxa with known island ages. Results The reconstructed phylogenetic tree was well supported and recovered monophyly of the genera Leptotila and Zenaida, but the quail‐doves (Geotrygon) were paraphyletic, falling into three separate lineages. The phylogeny indicated at least nine dispersal‐driven divergence events between North and South America. There were also five dispersal events in the recent past that have not yet led to differentiation of taxa (polymorphic taxa). Main conclusions Most of these dispersal‐driven diversification events occurred at the time of or after the formation of the Central American land bridge, indicating that this land connection played a role in facilitating divergence via dispersal of doves between continents.  相似文献   

20.
The Anisophylleaceae comprise 29-34 species of shrubs and trees occurring in lowland forests and swamps in tropical Africa, Asia, and South America. These species are placed in four genera with disjunct geographic distributions; Anisophyllea has 25-30 species in South America, Africa, and Malesia; Combretocarpus has one species in Sumatra and Borneo; Poga one species in equatorial Africa; and Polygonanthus two in the Amazon Basin. Here we use a phylogeny based on six nuclear and plastid loci sequenced for 15 species representing the four genera to infer their relationships and the relative and absolute ages of the range disjunctions. Combretocarpus is sister to the other three genera, and Polygonanthus then sister to Poga and Anisophyllea. Ansiophyllea, represented by 12 species from all three continents, is monophyletic. A relaxed Bayesian clock calibrated with the oldest fossils from a relevant outgroup, Tetramelaceae, suggests that the disjunctions between Combretocarpus, Poga, and Polygonanthus date back to the Cretaceous, Mid-, and Upper Eocene, whereas the intercontinental disjunctions within Anisophyllea appear to date back only some 22-23 million years and thus probably result from long-distance dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号