首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent report in this journal [Vairapandi, M. and Duker, N.J. (1993) Nucleic Acids Res. 21, 5323-5327) presented evidence of an activity in HeLa cell nuclear extracts that released radiolabeled material from a poly(dG.dC) polymer that had been methylated and simultaneously labeled on cytosine residues by incubation with a CpG-specific DNA methylase and [methyl-3H]S-adenosylmethionine. Based on chromatographic evidence that the released products were thymine and 5-methylcytosine and on f1p4olabeling data suggesting a concomitant increase in abasic sites, the authors concluded that the releasing activity was a 5-methylcytosine-specific glycosylase and that the solubilized 5-methylcytosine was converted to thymine by a nuclear deaminase. We have confirmed that HeLa nuclear extracts promote release of ethanol-soluble radioactivity from a methyl-labeled poly(dG-5-methyl-dC)polymer, but the products released were neither 5-methylcytosine nor thymine. Furthermore, free 5-methylcytosine was not deaminated by incubation with the nuclear extract. The labeled compound released initially from the polymer appeared to be 5-methyl-deoxycytidine monophosphate, which was converted to 5-methyl-deoxycytidine, thymidine monophosphate, and/or thymidine by further incubation with the nuclear extract. The activity responsible for the release, therefore, was a nuclease. Release of 32P-labeled nucleotides from a 32P-labeled poly(dG-dC) polymer suggested, furthermore, that the activity was not specific for methylated DNA.  相似文献   

2.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

3.
M J Behe 《Biopolymers》1986,25(3):519-523
The vacuum CD spectra of poly(rG-dC)·poly(rG-dC) and poly(dG-m5dC)·poly(dG-m5dC) have been obtained for the low-salt Z-conformations of both polymers. The spectra are very similar to those for the high-salt Z-forms. This behavior is consistent with the suggestion that the low- and high-salt Z-forms are comprised of different proportions of ZI- and ZII-conformations.  相似文献   

4.
5.
Extensive circular dichroism studies have been conducted with the title polynucleotides under various solution conditions. The studies provided the following information: (i) The halogen atoms in place of thymine methyl hinder the isomerization into X-DNA. (ii) The brominated but not iodinated polynucleotide isomerizes into Z-DNA in concentrated NaCl+NiCl2. The transition takes place at lower NiCl2 concentrations than with poly(dA-dT). (iii) The iodinated polynucleotide forms an unusual conformation in aqueous solution in which it is very stable. It isomerizes from this conformer into the usual B-type double helix in concentrated ethanol solutions. The isomerization is a two-state cooperative process. (iv) Both title polynucleotides undergo still another two-state cooperative transition in trifluorethanol solutions presumably into A-DNA showing a rather unusual circular dichroism spectrum.  相似文献   

6.
H Y Wu  M J Behe 《Nucleic acids research》1985,13(11):3931-3940
Salt induced transitions between four conformations of the methylated ribo-deoxyribo co-polymer poly (rG-m5dC).poly (rG-m5dC) have been studied using phosphorous-NMR, Raman spectroscopy, and circular dichroism. A high salt A-Z transition is observed for the polymer. However, the methylated polymer does not enter the high salt Z form more readily than the analogous unmethylated polymer, unlike the effect of methylation on the fully deoxy polymer poly (dG-dC).poly (dG-dC). The methylated polymer fails to undergo a low salt A-Z transition in 5 mM Tris buffer, unlike the unmethylated poly (rG-dC).poly (rG-dC). However, if the counterion is changed to triethanolamine buffer, an A-Z transition does take place. In 5 mM Tris buffer the phosphorous-NMR spectrum of poly (rG-m5dC).poly (rG-m5dC) shows one resonance in the absence of NaCl that splits into two closely spaced resonances as the NaCl level is increased to 30 mM. The Raman spectrum of poly (rG-m5dC).poly (rG-m5dC) shows that it is in the A conformation at intermediate salt concentrations. From this we conclude that poly (rG-m5dC).poly (rG-m5dC) is in a regular A conformation in Tris buffer at low Na+ levels, shifting to an alternating A conformation with a dinucleotide repeat at intermediate salt concentrations.  相似文献   

7.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

8.
9.
In contrast to poly(dG).poly(dC), which remains in the B-DNA conformation under all experimental conditions the polynucleotides with the strictly alternating guanine/cytosine or guanine/5'-methylcytosine sequences can change from the classical right-handed B-DNA structure to the left-handed Z-DNA structure when certain experimental conditions such as ionic strength or solvent composition are fulfilled. Up to now the investigation of the helix/coil transition of left-handed DNA structures was not possible because the transition temperature exceeds 98 degrees C. By applying moderate external pressure to the surface of the aqueous polymer solution in the sample cell the boiling point of the solvent water is shifted up the temperature scale without shifting the transition temperature, so that we can measure the helix/coil transition of the polynucleotides at all experimental conditions applied. It can thus be shown that the Z-DNA/coil transition is cooperative and reversible. The Tm is 125 degrees C for poly(dG-m5dC).poly(dG-m5dC) in 2mM Mg2+, 50mM Na+, pH 7.2 and 115 degrees c for poly[d(G-C)].poly[d(G-C)] in 3.04M Na+. The transition enthalpy per base pair was determined by the help of an adiabatic scanning microcalorimeter.  相似文献   

10.
The physicochemical properties of a high-molecular-weight spin-labeled nucleic acid, (RUGT,U)n, synthesized by enzymatic copolymerization, were evaluated by uv and ESR spectroscopy. It was shown earlier that spin labeling of nucleic acids by chemical modification to an extent which gives a nitroxide-to-nucleotide ratio greater than 0.002 can cause noticeable lattice perturbations (A. M. Bobst, A. Hakam, P. W. Langemeier, and S. Kouidou (1979), Arch. Biochem. Biophys. 187, 339–345). The presence of RUGT, a 5-nitroxide-labeled uridine residue, in a (U)n lattice at a RUGTU ratio of 0.01 is shown here not to affect the complexation with (A)n, since the uv melting temperature (T0OD) of the 2 → 1 transition and the hypochromicity changes were the same for (RUGT,U)n· (A)n and (U)n·(A)n. ESR measurements indicated that the nitroxide radical reflects the transition accurately within the error limit, although a slight destabilization of the spinlabeled segment could not be excluded. Computer simulations showed conclusively that the spin melting temperature (Tmsp) corresponds to the temperature at which half of the spin-labeled segments are no longer complexed, for the ESR spectrum at Tmspcan be simulated with equal contributions from the line shapes of ESR spectra taken before and after the transition. Arrhenius plots obtained by using two different approaches for computing correlation times were qualitatively the same. Computer analysis also revealed that the formation of a (RUGT,U)n·(A)n complex can be described by a two-state model, in contrast to results obtained with chemically spin-labeled (U)n. Thus, using (RUGT,U)n over chemically spin-labeled (U)n can offer distinct advantages.  相似文献   

11.
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) adducts was explored. Site-specifically-modified oligodeoxynucleotides containing a single stereoisomeric dG-N(2)-BPDE lesion were used as DNA templates for primer extension reactions catalyzed by pol kappa Delta C. Primer extension was retarded one base prior to the dG-N(2)-BPDE lesion; when incubated for longer times or with higher concentration of enzyme, full primer extension was observed. Quantitative analysis of fully extended products showed preferential incorporation of dCMP, the correct base, opposite all four stereoisomeric dG-N(2)-BPDE lesions. (+)-trans-dG-N(2)-BPDE, a major BPDE-DNA adduct, promoted small amounts of dTMP, dAMP, and dGMP misincorporation opposite the lesion (total 2.7% of the starting primers) and deletions (1.1%). Although (+)-cis-dG-N(2)-BPDE was most effective in blocking translesion synthesis, its miscoding properties were similar to other dG-N(2)-BPDE isomers. Steady-state kinetic data indicate that dCMP is efficiently inserted opposite all dG-N(2)-BPDE adducts and extended past these lesions. The relative frequency of translesion synthesis (F(ins) x F(ext)) of dC.dG-N(2)-BPDE pairs was 2-6 orders of magnitude higher than that of other mismatched pairs. Pol kappa may play an important role in translesion synthesis by incorporating preferentially the correct base opposite dG-N(2)-BPDE. Its relatively low contribution to mutagenicity suggests that other newly discovered DNA polymerase(s) may be involved in mutagenic events attributed to dG-N(2)-BPDE adducts in human cells.  相似文献   

12.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

13.
An X-ray fiber diffraction study of the synthetic DNA duplex poly d(Abr5U).poly d(Abr5U) shows that its sodium salt adopts an unexceptional A-DNA-like structure. Similar to A-DNA, two molecules are packed in a monoclinic unit cell (a = 2.23 nm, b = 4.14 nm, c = 5.61 nm and alpha = beta = gamma = 90 degrees) of space group C2. Because of its dinucleotide chemical motif, the c-repeat is twice that in A-DNA but, notably, corresponding backbone conformation angles of adjacent nucleotides are almost identical. This is in marked contrast to many B-like conformations of polydinucleotides.  相似文献   

14.
Mixing curve experiments and melting curve analyses have shown that poly(m2A) forms complexes with poly(br5U) with stoichiometries of either 1:1 or 1:2 in high ionic strengths. CD spectra of poly(m2A).poly(br5U) and poly(m2A).2 poly(br5U) both resemble quite well to those of poly(A). poly(br5U) and poly(A).2poly(br5U), respectively. This suggests that the corresponding complexes are closely related in the structural details. Significant similarities of the CD spectra were observed for poly(m2A).2poly(br5U) and complexes between 2,9-dimethyladenine or 2-methyladenosine and poly(br5U) in the presence of spermine, indicating also the 1:2 stoichiometry. Thus, a methyl group at the position 2 of adenine ring is not necessarily hindering a formation of the Watson-Crick type base pairings.  相似文献   

15.
J Ausio  G Zhou  K van Holde 《Biochemistry》1987,26(18):5595-5599
Polynucleosomes with poly(dG-m5dC).poly(dG-m5dC) have been reconstituted, and well-defined nucleosome core particles from these have been prepared. Upon addition of MgCl2 to the levels used to induce the B to Z transition in this highly methylated DNA, significant changes in the circular dichroism spectrum are observed in solutions of these particles. However, such core particles also exhibit a noticeable instability when compared to chicken erythrocyte core particles under the same conditions. The change in circular dichroism can be entirely accounted for on the assumption that only free nucleotide, released by core particle dissociation, undergoes the B----Z transition. Therefore, no evidence has been found for "Z nucleosomes" in these solutions. In fact, the histone-DNA interaction in the nucelosome seems to partially inhibit the B to Z transition of the DNA. The analysis of our results is consistent with a model in which all of the DNA that remains bound to the histone octamer retains the B form.  相似文献   

16.
Poly-5-dimethylaminouridylic acid, (poly(Me2N5U)) has been synthesized by the conversion of 5-bromouridine-5'-monophosphate to 5-dimethylaminouridine-5'-monophosphate which was later made into the 5'-diphosphate and subsequently polymerized by PNPase. The polymer formed a 1:1 hybrid with poly(A) with the ability to induce the production of interferon in chick embryoes as certain doses of the hybrid protected chick embryoes against wesselsbron virus (H 10964).  相似文献   

17.
It is shown, using circular dichroism spectroscopy, that poly(dI-dC) is capable to isomerize into both Z-DNA and A-DNA in concentrated NaCl + NiCl2 and trifluoroethanol solutions, respectively. This polynucleotide also undergoes a cooperative, two-state transition in ethanol into a structure which most probably is a canonical B-DNA. This implies that the conformation of poly(dI-dC) is unusual in low-salt aqueous solution. The canonical B-DNA is also adopted by poly(dI-methyl5dC) in trifluoroethanol while this polynucleotide adopts Z-DNA not only in NaCl + NiCl2 but also in the presence of MgCl2. Poly(dI-methyl5dC) partially adopts X-DNA in concentrated CsF and mainly ethanolic solutions. Poly(dI-bromo5dC) isomerizes into Z-DNA not only in concentrated NaCl even in the absence of NiCl2 but also in concentrated MgCl2. This polynucleotide transforms between two distinct variants of Z-DNA in ethanol or trifluoroethanol solutions.  相似文献   

18.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

19.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Normal-mode calculation for methylated Z-DNA poly(dG-m5dC).(dG-m5dC)   总被引:1,自引:0,他引:1  
X M Hua  E W Prohofsky 《Biopolymers》1988,27(4):645-655
Normal modes of methylated Z-DNA poly(dG-m5dC) · (dG-m5dC) are computed by helix-lattice dynamics. Good agreement with Raman spectral data is obtained. We discuss improvements in the formulation of the problem that allow us to greatly reduce the size of the matrix used. This leads to greatly reduced calculation times. The improvements come from using knowledge of the C2 and time-reversal symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号