首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aphid, Aphis punicae Passerini (Homoptera : Aphididae) is a serious pest attacking pomegranate (Punica granatum L.), an important semi arid fruit crop grown widely in most parts of the country. The major predators found preying on A. punicae in pomegranate ecosystem were Cheilomenes sexmaculata (Fabricius), Scymnus sp., Pseudaspidemerus circumflexo (Motsch.), Paragus serratus (Fabricius), Ischiodon scutellaris (Fabricius) and Chrysopa sp. The population dynamics and spatial distribution of these predators in an unsprayed pomegranate ecosystem were studied at Indian Institute of Horticultural Research, Bangalore (12 degrees 58' N; 77 degrees 35'E), India during 2000-2002. The predators were found to be distributed uniformly among different tree quadrants and followed the same distributional pattern of A. punicae during their peak in January and February. The predator density was relatively higher in lower canopies than upper canopies. The spatial distribution of predators showed aggregate distribution pattern at higher mean densities and exhibited regular or under-dispersed distribution at lower mean densities. The temporal distribution of aphidophagous predators on A. punicae showed two peaks one during January - February and second during August - September The population of predators started building up along with aphid population and reached maximum at high aphid densities and declined as the prey availability declined. This indicated that predators followed the same trend of their prey, A. punicae, showing a clear numerical response.  相似文献   

2.
The growth of each individual in plant populations was simulatedby a spatial competition model for five density levels and fourdifferent spatial distribution patterns of individuals, varyingfrom highly clumped to regular. The simulation results wereanalysed using the diffusion model for evaluating the effectsof density and distribution pattern on the size-structure dynamicsin relation to the degree of competitive asymmetry. At low densities,changes in statistics of plant weight over time such as mean,coefficient of variation, skewness, and Box-Cox-transformedkurtosis differed greatly among spatial patterns, irrespectiveof the degree of competitive asymmetry. In completely symmetriccompetition, the spatial effect on size-structure dynamics remainedrelatively large irrespective of densities, although mean plantweight became similar among the spatial patterns with increasingdensity. However, the spatial effect diminished with increaseddensity in strongly asymmetric competition, when similar sizedistributions were realized irrespective of the spatial patterns.Therefore, it was concluded that: (1) irrespective of the degreeof competitive asymmetry, spatial pattern is important for size-structuredynamics at low densities; (2) spatial pattern is nearly immaterialunder strongly asymmetric competition at high densities; and(3) under crowded conditions, neighbourhood effects are muchmore apparent at the population level in less asymmetric competition.These processes and outcomes are linked to the forms of thefunctions of mean growth rate of individuals [G(t,x) function]and variance in growth rate [D(t,x) function]. These functionsare variable depending on the spatial pattern under symmetriccompetition, but are rather stable under strongly asymmetriccompetition at high densities irrespective of the spatial patterns.Therefore, size structure under strongly asymmetric competitioncan be regarded as a stable system, whereas that under symmetriccompetition is regarded as a variable system in relation tothe spatial pattern and process. From this, it was inferredthat: (1) the goodness-of-fit of spatial competition modelsfor crowded plant populations is higher in less asymmetric competition;and (2) higher species diversity in plant communities is associatedwith the lower degree of competitive asymmetry.Copyright 1994,1999 Academic Press Asymmetric competition, diffusion model, neighbourhood effect, size-structure stability, spatial competition model, spatial distribution pattern, species diversity, symmetric competition  相似文献   

3.
1. The positive abundance-occupancy and abundance-variance relationships are two of the most widely documented patterns in population and community ecology. 2. Recently, a general model has been proposed linking the mean abundance, the spatial variance in abundance, and the occupancy of species. A striking feature of this model is that it consists explicitly of the three variables abundance, variance and occupancy, and no extra parameters are involved. However, little is known about how well the model performs. 3. Here, we show that the abundance-variance-occupancy model fits extremely well to data on the abundance, variance and occupancy of a large number of arthropod species in natural forest patches in the Azores, at three spatial extents, and distinguishing between species of different colonization status. Indeed, virtually all variation about the bivariate abundance-occupancy and abundance-variance relationships is effectively explained by the third missing variable (variance in abundance in the case of the abundance-occupancy relationship, and occupancy in the case of the abundance-variance relationship). 4. Introduced species tend to exhibit lower densities, less spatial variance in these densities, and occupy fewer sites than native and endemic species. None the less, they all lie on the same bivariate abundance-occupancy and abundance-variance, and trivariate abundance-variance-occupancy, relationships. 5. Density, spatial variance in density, and occupancy appear to be all the things one needs to know to describe much of the spatial distribution of species.  相似文献   

4.
1. Spatial heterogeneity in population density is predicted to have important effects on population characteristics, such as competition intensity and carrying capacity. Patchy breeding distributions will tend to increase spatial heterogeneity in population density, whereas dispersal from breeding patches will tend to decrease it. The potential for dispersal to homogenize densities is likely to differ both among organisms (e.g. plants vs. mobile animals) and throughout ontogeny (e.g. larvae vs. adults). However, for mobile organisms, experimental studies of the importance of breeding distributions from the wild are largely lacking. 2. In the present study, experimental manipulations replicated over eight natural streams and 2 years enabled us to test for effects of the distribution of Atlantic salmon eggs over spatial scales which are relevant to local interactions among individuals. Artificial nests were placed along 250 m study reaches at one of two levels of nest dispersion - patchy (two nests per stream) and dispersed (10 nests per stream) - while holding total egg density (eggs m(-2) stream area) constant. 3. Nest dispersion had significant effects on the spatial distribution of the resulting juveniles in their first summer. Patchy nest distributions resulted in a highly right-skewed frequency distribution of local under-yearling densities (among 25 m sampling sections), as sample sections adjacent to the nest sites had relatively high densities. In contrast, dispersed nest distributions yielded approximately normal density distributions. Sections with high relative densities in the patchy nest distribution treatments also had relatively small juvenile body sizes, and patchy egg distribution appeared to produce a higher redistribution of individuals from the first to the second juvenile growth season than the dispersed distribution. 4. Because patchy breeding distribution combined with limited early dispersal can create spatial variation in density over scales directly relevant for individual interactions, this will be one important component in determining mean levels of early juvenile competition and its spatial variation within populations. Assuming random or ideal-free distribution of individuals may therefore underestimate the mean level of density experienced by juveniles over surprisingly small spatial scales (orders of magnitude smaller than total spatial extent of populations), even for mobile organisms.  相似文献   

5.
The spatial distribution of propagules in soil is an important factor in determining the ability of mycoparasites to control soilborne plant pathogens. The assumptions of uniform, random and aggregated propagule distribution were used to evaluate the importance of spatial distribution patterns of propagules of a mycoparasite. For the random and uniform cases explicit expressions were obtained for the average distance between propagules. Average distances among propagules are 40-50% smaller for the random compared to the uniform distribution. For the aggregated case no explicit expression is possible and numerical simulations were used to generate spatial distributions. The consequences for host inactivation by the mycoparasite were evaluated using a simple model of omnidirectional and constant growth of the mycoparasite. A random distribution of propagules gave a considerably slower rate of inactivation than the uniform distribution. Numerical simulations were made to generate comparable patterns of host inactivation for aggregated distributions in which propagule clusters were located at random in three-dimensional space and the distances between propagules with centres followed a normal distribution. The number of propagule centres and propagules/centre varied for a given inoculum density. Parameters were estimated from published data for sclerotia of Sclerotium minor inactivation at different densities of macroconidia of Sporidesmium sclerotivorum. Differences in host inactivation between the uniform and random distributions were small but both gave poor predictions of the field data at low and high densities. The aggregated distribution gave an improved fit for the higher propagule densities but no improvement at the lower. In studying the dynamics of mycoparasites it may be more significant epidemiologically to design treatments based on differences in mean distances between propagules rather than population densities. Density-dependent effects on growth rate need more attention in models and studies on mycoparasite ecology.  相似文献   

6.
We investigated the effects of both overall density and variation in local density on the relationship between emergence time and final biomass in Prunella vulgaris. The relationship between emergence time and final biomass was used to quantify the pattern of selection on emergence time. Seeds were planted in flats in three different spatial distributions (hexagonal, random, high variance) at each of three overall densities (308, 769, and 3,077 seeds/m2). Individual seedlings were marked upon emergence, and their final biomass was determined after 90 days of growth. With increasing overall density, mean plant biomass decreased, but the coefficient of variation in biomass and the magnitude of directional selection for early emergence increased. Increasing variation in the spatial distribution of the plants had no effect on mean plant biomass but did significantly increase the coefficient of variation in biomass at both low and medium densities. Both the magnitude of directional selection and the curvature in the relationship between emergence time and final biomass tended to increase with increased variation in the spatial distribution. Our results suggest that both overall plant density and the spatial distribution of individuals can affect the pattern of selection on plant traits.  相似文献   

7.
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.  相似文献   

8.
1. Intraspecific aggregation at a single spatial scale can promote the coexistence of competitors. This paper demonstrates how this same mechanism can be applied to the many systems that are patchy at two scales, with patches nested within 'superpatches'.
2. Data are presented from a field study showing that insects living in rotting fruits have aggregated distributions in the fruits under a single tree, and that the mean density and degree of aggregation varies significantly among trees. Observations in this system motivate the following models.
3. A model of competition has been developed between two species which explicitly represents spatial variation at two scales. By integrating the probability distributions for each scale, the marginal distributions of competitors over all patches can be found and used to calculate coexistence criteria. This model assumes global movement of the competitors.
4. Although spatial variation at a single scale may not be sufficient for coexistence, the total variation over all patches can allow coexistence. Variation in mean densities among superpatches and variation in the degree of aggregation among superpatches both promote coexistence, but act in different ways.
5. A second model of competition between two species is described which incorporates the effects of limited movement among superpatches. Limited movement among superpatches generally promotes coexistence, and also leads to correlations among aggregation and the mean densities of competitors.  相似文献   

9.
10.
We tested the hypothesis that the population density of ambrosia beetles at the stand level influences the spatial distribution of infested trees. We evaluated the spatial distribution of the ambrosia beetle, Platypus koryoensis (Murayama) in three oak forest stands that varied in beetle population density using a multi-year trapping survey. We used these data to inform a clustering analysis based on aggregation indices using the SADIE software. Four important findings emerged: (1) the spatial distribution pattern of P. koryoensis at the stand level changed as the population density of the beetle varied; (2) at low population densities, beetle distribution was contagious at the stand level; (3) as beetle population densities increased, the spatial distribution of infested trees became random, potentially due to beetle avoidance of mass attacked trees; and (4) at high beetle population densities, the spatial distribution of infested trees became contagious, possibly due to temporal changes in location of the attack epicenter within the stand. Our results support the hypothesis that beetle population density has consequences for the spatial distribution of infested trees at the within-stand scale. We conclude that the spatial distribution of infested trees is flexible in response to beetle population density, suggesting that beetle attack behaviors are mediated by one or more density-dependent effects.  相似文献   

11.
JL Kitchen  RG Allaby 《PloS one》2012,7(8):e43254
Computational models of evolutionary processes are increasingly required to incorporate multiple and diverse sources of data. A popular feature to include in population genetics models is spatial extension, which reflects more accurately natural populations than does a mean field approach. However, such models necessarily violate the mean field assumptions of classical population genetics, as do natural populations in the real world. Recently, it has been questioned whether classical approaches are truly applicable to the real world. Individual based models (IBM) are a powerful and versatile approach to achieve integration in models. In this study an IBM was used to examine how populations of plants deviate from classical expectations under spatial extension. Populations of plants that used three different mating strategies were placed in a range of arena sizes giving crowded to sparse occupation densities. Using a measure of population density, the pollen communication distance (P(cd)), the deviation exhibited by outbreeding populations differed from classical mean field expectations by less than 5% when P(cd) was less than 1, and over this threshold value the deviation significantly increased. Populations with an intermediate mating strategy did not have such a threshold and deviated directly with increasing isolation between individuals. Populations with a selfing strategy were influenced more by the mating strategy than by increased isolation. In all cases pollen dispersal was more influential than seed dispersal. The IBM model showed that mean field calculations can be reasonably applied to natural outbreeding plant populations that occur at a density in which individuals are less than the average pollen dispersal distance from their neighbors.  相似文献   

12.
The knowledge about the spatial ecology and distribution of organisms is important for both basic and applied science. Biologging is one of the most popular methods for obtaining information about spatial distribution of animals, but requires capturing the animals and is often limited by costs and data retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for wildlife surveillance and habitat monitoring, but their potential contribution to the prediction of animal distribution patterns and abundance has not been thoroughly evaluated. In this study, we assess the usefulness of UAS overflights to (1) get data to model the distribution of free‐ranging cattle for a comparison with results obtained from biologged (GPS‐GSM collared) cattle and (2) predict species densities for a comparison with actual density in a protected area. UAS and biologging derived data models provided similar distribution patterns. Predictions from the UAS model overestimated cattle densities, which may be associated with higher aggregated distributions of this species. Overall, while the particular researcher interests and species characteristics will influence the method of choice for each study, we demonstrate here that UAS constitute a noninvasive methodology able to provide accurate spatial data useful for ecological research, wildlife management and rangeland planning.  相似文献   

13.
Targeted remediation strategies offer the potential to treat only those areas where contamination exceeds predefined threshold levels. We used geostatistical techniques to characterize spatial distribution of heavy metals across a contaminated site, with the aim of delineating the contaminants, which is essential for successful implementation of targeted remediation strategies. Samples collected from three depths, 0–20 cm, 20–40 cm and 40–60 cm at 50 sample locations, were analyzed for As, Sb, Hg, Pb, Cd and Cu contents. The geostatistical analysis of this data enabled the identification of a number of contamination hotspots and trends. The visual interpretation of the data was supported by the statistical analysis in the form of Spearman's rank correlation coefficient. Additionally, classical statistics, based on the central limit theorem, showed that, in terms of obtaining the true mean for each of the contaminants within acceptable limits of precision, the site has been more than adequately sampled.It has been demonstrated that kriging can offer the potential to map the spatial distribution of contaminants. However, the possibility of an undetected hotspot remains, even when probabilistic modelling and a secondary phase of validatory sampling are employed. This together with the large number of samples required may preclude the commercial use of geostatistics in the remediation of contaminated land.  相似文献   

14.
In heterogeneous landscapes individuals select among several habitat patches. The fitness rewards of these choices are assumed to play an important role in the distribution of individuals across landscapes. Individuals can either use environmental cues to directly assess the quality of breeding sites, or rely on social cues to guide the settlement decision. We estimated the density of adult birds and per capita reproductive success of willow ptarmigan over 5–15 years in 42 survey areas, nested within 5 spatially separated populations in south-central Norway. Our aims were to (1) examine spatial and temporal patterns of variation in densities of adult birds (i.e., the breeding densities) and reproductive success (juveniles/pair) measured in autumn and (2) evaluate which habitat distribution model best described the distribution of willow ptarmigan across heterogeneous mountain landscapes. Variation in density of adult birds was primarily attributable to variation between survey areas which could arise from spatial heterogeneity in adult survival or as a consequence of spacing behavior of juveniles during the settlement stage. In contrast, reproductive success was more variable between years and did not vary consistently between survey areas once year effects were accounted for. The lack of any relationship between the density of adult birds and reproductive success supported the predictions of an ideal free distribution (IFD), implying that within years, the mean reproductive success was approximately equal across survey areas. However, analysis based on Taylor's power law (i.e., the relationship between logarithms of spatial variance and mean density of adult birds) suggested that aggregation was stronger than expected under IFD. This implies that the relative change in density of adult birds was larger in areas with high mean densities than in areas with low densities. The exact mechanisms causing this statistical pattern are unclear, but based on the breeding biology of willow ptarmigan we suggest that yearlings are attracted to areas of high densities during the settlement period in spring. Our study was conducted during a period of low overall density and we suggest that this pattern might be particular to such situations. This implies that the presence of conspecifics might represent a cue signaling high adult survival and thus high habitat quality.  相似文献   

15.
Taylor 's power law, s2=amb, provides a precise summary of the relationship between sample variance (s2) and sample mean (m) for many organisms. The coefficient b has been interpreted as an index of aggregation, with a characteristic value for a given species in a particular environment, and has been thought to be independent of the sample unit. Simulation studies were conducted that demonstrate that the value of b may vary with the size of the sample unit in quadrat sampling, and this relationship, in turn, depends on the underlying spatial distribution of the population. For example, simulated populations with hierarchical aggregation on a large scale produced values of b that increased with the size of the sample unit. In contrast, for a simulated population with randomly distributed clusters of individuals, the value of b eventually decreased with increasing quadrat size, as sample counts became more uniform. A single value ofTaylor 's b, determined with a particular sample unit, provides neither a fixed index of aggregation nor a complete picture of a species' spatial distribution. Rather, it describes a consistent relationship between sample variance and sample mean over a range of densities, on a spatial scale related to the size of the sample unit. This relationship may reflect, but not uniquely define, density-dependent population and behavioral processes governing the spatial distribution of the organism. Interpretation ofTaylor 'sb for a particular organism should be qualified by reference to the sample unit, and comparisons should not be made between cases in which different sample units were used. Whenever possible, a range of sample units should be used to provide information about the pattern of distribution of a population on various spatial scales.  相似文献   

16.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In S?o Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.  相似文献   

17.
小麦吸浆虫空间格局参数及其应用   总被引:6,自引:0,他引:6  
张Xun 《昆虫知识》1999,36(3):140-144
本文应用聚集度指数、分析表明了小麦吸浆虫在麦田中的空间格局呈负二项分布,并探讨了吸浆虫在田间的聚集原因以及小麦吸浆虫穗虫平均密度(x)与负二项分布公共kc值的关系。  相似文献   

18.
Summary Spatial inhomogeneities such as nonconstant population densities usually will be attributed to random effects or to an inhomogeneous substrate. Such an explanation may be incorrect since from certain chemical reactions it is known that the interaction of species together with diffusion may generate nonhomogeneous spatial structures. However, the effect of boundary conditions has been so far neglected. In this paper nonlinear and linear interaction-diffusion models are investigated under various side-conditions by analytic methods and by computer simulations. A remarkable fact, as compared with earlier results in the field, is the example of an interaction-diffusion process which in the whole space has only the constant as a stable limit distribution, whereas the introduction of a side condition, e.g. a population reservoir or a barrier, leads to standing spatial population waves.  相似文献   

19.
  • 1 Shade management is commonly considered to be an effective pest management strategy for cocoa mirids, yet shade management recommendations are not based on extensive knowledge of the mirid ecology in traditional cocoa agroforests.
  • 2 The main objectives of the present study were an assessment of the impact of shade on the spatial distribution of mirid populations and thus the evaluation of shade management strategies.
  • 3 Mirid densities were measured and shade was characterized for three plots located in three different agroecological zones in the Centre region of Cameroon. Mirid densities generally followed a negative binomial law. Geostatistical procedures were used to characterize spatial distribution of mirid density. Light conditions were assessed using hemispherical photography.
  • 4 Populations of Sahlbergella singularis were highly aggregated in the plots. Semivariance analysis and kriging visualized the spatial dependence of mirid densities. Clearly distinguishable mirid pockets of 20–30 adjacent infested cocoa trees were identified in two of the three plots.
  • 5 The high diversity of shade tree species and the large variability in density and size of shade trees resulted in a considerable heterogeneity of plot light conditions. Percentage transmitted light varied in the range 9.4–80.1% in the most heterogeneous plot.
  • 6 For two of the three plots, mirid pockets were aggregated in those areas where light transmission was highest. In the third plot, relatively high mirid densities and the presence of an alternative host resulted in a more homogeneous distribution. The importance of these findings for improved mirid control is discussed.
  相似文献   

20.
Data from the 1961 and 1971 Censuses in England and Wales were used to estimate the age distribution of women of various parities in 1976. Applying the age-specific incidences of breast cancer for women in England and Wales in 1975 gave the expected number of cases of that disease in 1976 and permitted an estimate of the mean age at diagnosis of breast cancer at each parity. This showed that the highest average age for breast cancer occurred in nulliparous women (65.9 years) and that the lowest age for the disease occurred in women who had borne two children (60.4 years). The figures obtained were similar to those reported in a separate study of women treated in Birmingham. The results of that study, however, may have been due to the age distribution in the population of women by parity, rather than any direct influence of parity on the speed of growth of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号