首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Actin nucleation is the rate-limiting step in actin assembly and is regulated by actin-binding proteins and signal transduction molecules. Salmonella enterica serovar Typhimurium exploits actin dynamics by reorganizing the host actin cytoskeleton to facilitate its own uptake. SipC is a Salmonella actin-binding protein that nucleates actin filament formation in vitro. The molecular mechanism by which SipC nucleates actin is not known. We show here that SipC(199-409) forms multimers to promote actin nucleation. We found that wild-type SipC(199-409) forms dimers and multimers while SipC(199-409)#1, a nucleation mutant, is less efficient in dimer and multimer formation. Biochemical analysis suggested that SipC(199-409) might form parallel dimers in an extended conformation. Furthermore, a mutant Salmonella strain that was defective in forming the SipC multimer and deficient in actin nucleation failed to cause severe colitis in a mouse model. These results allow us to present a model in which SipC forms multimers to promote actin nucleation.  相似文献   

2.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

3.
The delivery of effector proteins by Salmonella across the host cell membrane requires a subset of effectors secreted by the type III secretion system (TTSS) known as translocators. SipC and SipB are translocator proteins that are inserted into host membranes and presumably form a channel that translocates type III effectors into the host cell. The molecular events of how these translocators insert into the host cell membrane remain unknown. We have previously shown that the SipC C-terminal amino acid region (321–409) is required for the translocation of effectors into host cells. In this study, we demonstrate that the ability to form SipC-SipB complex is essential for their insertion into the host membrane. The SipB-interacting domain of SipC is near its C-terminal amino acid region (340–409). In the absence of SipB, SipC was not detected in the membrane fraction. Furthermore, SipC mutants that no longer interact with SipB are defective in inserting into the host cell membrane. We propose a mechanism whereby SipC binds SipB through its C-terminal region to facilitate membrane-insertion and subsequent translocon formation in the host cell membrane.  相似文献   

4.
The hallmark of Salmonella entry into host cells is extensive rearrangements of the host actin cytoskeleton at the site of Salmonella contact with intestinal epithelial cells. SopE, SopE2 and SopB, three type III effectors of Salmonella pathogenicity island 1 (SPI-1), activate the Cdc42 and Rac1 signal transduction pathways to promote these rearrangements. SipA and SipC, two Salmonella type III-secreted actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. Salmonella-induced actin cytoskeleton rearrangements are therefore the result of the coordinated action of a group of type III-secreted effector proteins.  相似文献   

5.
Salmonella causes severe gastroenteritis in humans, entering non-phagocytic cells to initiate intracellular replication. Bacterial engulfment occurs by macropinocytosis, which is dependent upon nucleation of host cell actin polymerization and condensation ('bundling') of actin filaments into cables. This is stimulated by contact-induced delivery of an array of bacterial effector proteins, including the four Sips (Salmonella invasion proteins). Here we show in vitro that SipC bundles actin filaments independently of host cell components, a previously unknown pathogen activity. Bundling is directed by the SipC N-terminal domain, while additionally the C-terminal domain nucleates actin polymerization, an activity so far known only in eukaryotic proteins. The ability of SipC to cause actin condensation and cytoskeletal rearrangements was confirmed in vivo by microinjection into cultured cells, although as SipC associates with lipid bilayers it is possible that these activities are normally directed from the host cell membrane. The data suggest a novel mechanism by which a pathogen directly modulates the cytoskeletal architecture of mammalian target cells.  相似文献   

6.
鼠伤寒沙门菌表达两个不同的Ⅲ型分泌系统(typeⅢsecretion/translocation systems, TTSS),分别由致病岛1和2(pathogenicityi slands 1 and 2, SPI-1 and SPI-2)编码。细菌依赖TTSS将效应蛋白转运至宿主细胞,通过“触发”机制诱导细菌进入宿主细胞。这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵。本综述依据多种沙门菌效应蛋白的功能,建立沙门菌侵袭模型。TTSS活化并转运效应蛋白进入宿主细胞发挥功能(Ⅰ)。小G蛋白交换因子SopE和肌醇磷酸酯酶SopB通过激活CDC42和Rac1,诱导内陷相关的蛋白聚集(Ⅱ)。SipA和SipC通过降低肌动蛋白临界浓度、刺激网素成束、稳定纤维状肌动蛋白(fibrousactin, F-actin)以及使肌动蛋白核化等功能,促使细菌入侵(Ⅲ)。SopB可使膜内陷区PIP2的浓度降低以及VAMP8聚集,促使细胞膜分裂(Ⅳ)。这些效应蛋白的联合作用,使膜皱褶在局部向外显著延伸,使沙门菌被细胞内形成的特殊膜结构包裹。沙门菌的另一种效应蛋白SptP,通过刺激小G蛋白内源性GTPase的活性,抑制小G蛋白的活化,使细胞膜恢复至原有状态(Ⅴ)。  相似文献   

7.
8.
SWAP-70, an unusual phosphatidylinositol-3-kinase-dependent protein that interacts with the RhoGTPase Rac, is highly expressed in mast cells. Cultured bone marrow mast cells (BMMC) from SWAP-70(-/-) mice are reduced in FcepsilonRI-triggered degranulation. This report describes the hitherto-unknown role of SWAP-70 in c-kit receptor signaling, a key proliferation and differentiation pathway in mast cells. Consistent with the role of Rac in cell motility and regulation of the actin cytoskeleton, mutant cells show abnormal actin rearrangements and are deficient in migration in vitro and in vivo. SWAP-70(-/-) BMMC are impaired in calcium flux, in proper translocation and activity of Akt kinase (required for mast cell activation and survival), and in translocation of Rac1 and Rac2 upon c-kit stimulation. Adhesion to fibronectin is reduced, but homotypic cell association induced through c-kit is strongly increased in SWAP-70(-/-) BMMC. Homotypic association requires extracellular Ca(2+) and depends on the integrin alpha(L)beta(2) (LFA-1). ERK is hyperactivated upon c-kit signaling in adherent and dispersed mutant cells. Together, we suggest that SWAP-70 is an important regulator of specific effector pathways in c-kit signaling, including mast cell activation, migration, and cell adhesion.  相似文献   

9.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.  相似文献   

10.
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a 'signaling hub' during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen-host interaction.  相似文献   

11.
Pathogen-induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmonella by non-phagocytic intestinal epithelial cells. Two Salmonella actin-binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F-actin bundling, we demonstrate that SipA stimulates substantially SipC-mediated nucleation of actin polymerization. SipA additionally enhances SipC-mediated F-actin bundling, and SipC-SipA collaboration generates stable networks of F-actin bundles. The data show that bacterial SipC and SipA cooperate to direct efficient modulation of actin dynamics, independently of host cell proteins. The ability of SipA to enhance SipC-induced reorganization of the actin cytoskeleton in vivo was confirmed using semi-permeabilized cultured mammalian cells.  相似文献   

12.
Bacteria-generated PtdIns(3)P recruits VAMP8 to facilitate phagocytosis   总被引:2,自引:0,他引:2  
Salmonella enterica serovar Typhimurium invades non-phagocytic cells by inducing macropinocytosis. SopB is involved in modulating actin dynamics to promote Salmonella-induced invasion. We report here that SopB-generated PtdIns(3)P binds VAMP8/endobrevin to promote efficient bacterial phagocytosis. VAMP8 is recruited to Salmonella-induced macropinosomes in a nocodazole-dependent, but Brefeldin A-independent, manner. We found that VAMP8 directly binds to and colocalizes with PtdIns(3)P. The inositol phosphatase activity of SopB is required for PtdIns(3)P and VAMP8 accumulation, while wortmannin, a specific phosphatidylinositol 3-kinase inhibitor, has no effect. Knockdown of endogenous VAMP8 by small interfering RNA or expression of a truncated VAMP8 (1-79aa) reduces the invasion level of wild-type Salmonella to that of the phosphatase-deficient SopB(C460S) mutant. Our study demonstrates that Salmonella exploit host SNARE proteins and vesicle trafficking to promote bacterial entry.  相似文献   

13.
The Salmonella typhimurium protein tyrosine phosphatase SptP is a target of the centisome 63 type III protein secretion system. This system is essential for the interaction of these bacteria with host cells. We have shown here by a combination of biochemical and microscopy techniques that S . typhimurium directs the translocation of SptP into cultured epithelial cells. Translocation requires the function of the secreted proteins, SipB, SipC and SipD, as strains carrying mutations in any of the genes encoding these proteins fail to translocate SptP. Microinjection of purified GST–SptP into cultured cells results in the disruption of the actin cytoskeleton and the disappearance of stress fibres. These changes are reversible, as microinjected cells regain the normal appearance of their actin cytoskeleton upon prolonged incubation. Microinjection of the catalytically inactive GST–SptP(C481S) protein results in changes similar to those induced by the wild-type toxin. Furthermore, microinjection of a fusion protein between GST and the first 285 amino acids of SptP also leads to identical disruption of the host cell actin cytoskeleton, indicating that the amino-terminal half of SptP is sufficient to mediate this effect. However, microinjection of a fusion protein between GST and the last 259 amino acids of SptP also disrupted the normal appearance of the cytoskeleton. These results support the hypothesis that SptP is an effector protein arranged in modular domains that may co-operate with each other to exert related functions.  相似文献   

14.
Entry of Salmonella into mammalian cells is strictly dependent on the reorganization of actin cytoskeleton induced by a panel of Salmonella type III secreted proteins. Although several factors have been identified to be responsible for inducing the actin polymerization and stability, little is known about how the actin depolymerization contributes to Salmonella-induced actin rearrangements. We report here that activity cycles of host actin depolymerizing factor (ADF and cofilin) are modulated by Salmonella during bacterial entry. Efficient Salmonella internalization involves an initial dephosphorylation of ADF and cofilin followed by phosphorylation, suggesting that ADF and cofilin activities are increased briefly. Expression of a kinase dead form of an ADF/cofilin kinase (LIM kinase 1) or a catalytically inactive ADF/cofilin phosphatase (Slingshot), but not constitutively active LIM kinase 1 or wild-type Slingshot, resulted in decreased invasion. These data suggest that ADF/cofilin activities play a key role in the actin polymerization/depolymerization process induced by Salmonella. The activation of ADF/cofilin is brief and has to be reversed to facilitate efficient bacterial entry. Surprisingly, co-expression of constitutive active ADF and cofilin prevented efficient Salmonella entry, whereas expression of either one alone had no effect. We propose that ADF and cofilin actin-dynamizing activities and their activity cycling via phosphorylation are required for efficient Salmonella internalization.  相似文献   

15.
Invasive Salmonella trigger their own uptake into non-phagocytic eukaryotic cells by delivering virulence proteins that stimulate signaling pathways and remodel the actin cytoskeleton. It has recently emerged that Salmonella encodes two actin-binding proteins, SipC and SipA, which together efficiently nucleate actin polymerization and stabilize the resulting supramolecular filament architecture. Therefore, Salmonella might directly initiate actin polymerization independently of the cellular Arp2/3 complex early in the cell entry process. This is an unprecedented example of a direct intervention strategy to facilitate entry of a pathogen into a target cell. Here, we discuss the Salmonella actin-binding proteins and how they might function in combination with entry effectors that stimulate Rho GTPases. We propose that membrane-targeted bacterial effector proteins might trigger actin polymerization through diverse mechanisms during cell entry by bacterial pathogens.  相似文献   

16.
Salmonella translocate bacterial effectors into host cells to confer bacterial entry and survival. It is not known how the host cells cope with the influx of these effectors. We report here that the Salmonella effector, SopA, interacts with host HsRMA1, a ubiquitin E3 ligase with a previously unknown function. SopA is ubiquitinated and degraded by the HsRMA1-mediated ubiquitination pathway. A sopA mutant escapes out of the Salmonella-containing vacuoles less frequently to the cytosol than wild type Salmonella in HeLa cells in a HsRMA1-dependent manner. Our data suggest that efficient bacterial escape into the cytosol of epithelial cells requires HsRMA1-mediated SopA ubiquitination and contributes to Salmonella-induced enteropathogenicity.  相似文献   

17.
A central feature of Salmonella pathogenicity is the bacterium's ability to enter into non-phagocytic cells. Bacterial internalization is the consequence of cellular responses characterized by Cdc42- and Rac-dependent actin cytoskeleton rearrangements. These responses are triggered by the co-ordinated function of bacterial proteins delivered into the host cell by a specialized protein secretion system termed type III. We report here that SopB, a Salmonella inositol polyphosphatase delivered to the host cell by this secretion system, mediates actin cytoskeleton rearrangements and bacterial entry in a Cdc42-dependent manner. SopB exhibits overlapping functions with two other effectors of bacterial entry, the Rho family GTPase exchange factors SopE and SopE2. Thus, Salmonella strains deficient in any one of these proteins can enter into cells at high efficiency, whereas a strain lacking all three effectors is completely defective for entry. Consistent with an important role for inositol phosphate metabolism in Salmonella-induced cellular responses, a catalytically defective mutant of SopB failed to stimulate actin cytoskeleton rearrangements and bacterial entry. Furthermore, bacterial infection of intestinal cells resulted in a marked increase in Ins(1,4,5,6)P4, a consumption of InsP5 and the activation of phospholipase C. In agreement with the in vivo findings, purified SopB specifically dephosphorylated InsP5 to Ins(1,4,5,6)P4 in vitro. Surprisingly, the inositol phosphate fluxes induced by Salmonella were not caused exclusively by SopB. We show that the SopB-independent inositol phosphate fluxes are the consequence of the SopE-dependent activation of an endogenous inositol phosphatase. The ability of Salmonella to stimulate Rho GTPases signalling and inositol phosphate metabolism through alternative mechanisms is an example of the remarkable ability of this bacterial pathogen to manipulate host cellular functions.  相似文献   

18.
Invasion plasmid antigen C (IpaC) is secreted via the type III secretion system (TTSS) of Shigella flexneri and serves as an essential effector molecule for epithelial cell invasion. The only homologue of IpaC identified thus far is Salmonella invasion protein C (SipC/SspC), which is essential for enterocyte invasion by Salmonella typhimurium. To explore the biochemical and functional relatedness of IpaC and SipC, recombinant derivatives of both proteins were purified so that their in vitro biochemical properties could be compared. Both proteins were found to: (i) enhance the entry of wild-type S. flexneri and S. typhimurium into cultured cells; (ii) interact with phospholipid membranes; and (iii) oligomerize in solution; however, IpaC appeared to be more efficient in carrying out several of the biochemical properties examined. Overall, the data indicate that purified IpaC and SipC are biochemically similar, although not identical with respect to their in vitro activities. To extend these observations, complementation analyses were conducted using S. flexneri SF621 and S. typhimurium SB220, neither of which is capable of invading epithelial cells because of non-polar null mutations in ipaC and sipC respectively. Interestingly, both ipaC and sipC restored invasiveness to SB220 whereas only ipaC restored invasiveness to SF621, suggesting that SipC lacks an activity possessed by IpaC. This functional difference is not at the level of secretion because IpaC and SipC are both secreted by SF621 and it does not appear to be because of SipC dependency on this native chaperone as coexpression of sipC and sicA in SF621 still failed to restore detectable invasiveness. Taken together, the data suggest that IpaC and SipC differ in either their ability to be translocated into host cells or in their function as effectors of host cell invasion. Because IpaB shares significant sequence homology with the YopB translocator of Yersinia species, the ability for IpaC and SipC to associate with this protein was explored as a potential indicator of translocation function. Both proteins were found to bind to purified IpaB with an apparent dissociation constant in the nanomolar range, suggesting that they may differ with respect to effector function. Interestingly, whereas SB220 expressing sipC behaved like wild-type Salmonella, in that it remained within its membrane-bound vacuole following entry into host cells, SB220 expressing ipaC was found in the cytoplasm of host cells. This observation indicates that IpaC and SipC are responsible for a major difference in the invasion strategies of Shigella and Salmonella, that is, they escape into the host cell cytoplasm. The implications of the role of each protein's biochemistry relative to its in vivo function is discussed.  相似文献   

19.
Salmonella enterica serovar Typhimurium (S. typhimurium) induces actin assembly both during invasion of host cells and during the course of intracellular bacterial replication. In this study, we investigated the involvement in these processes of host cell signalling pathways that are frequently utilized by bacterial pathogens to manipulate the eukaryotic actin cytoskeleton. We confirmed that Cdc42, Rac, and Arp3 are involved in S. typhimurium invasion of HeLa cells, and found that N-WASP and Scar/WAVE also play a role in this process. However, we found no evidence for the involvement of these proteins in actin assembly during intracellular replication. Cortactin was recruited by Salmonella during both invasion and intracellular replication. However, RNA interference directed against cortactin did not inhibit either invasion or intracellular actin assembly, although it resulted in increased cell spreading and a greater number of lamellipodia. We also found no role for either the GTPase dynamin or the formin family member mDia1 in actin assembly by intracellular bacteria. Collectively, these data provide evidence that signalling pathways leading to Arp2/3-dependent actin nucleation play an important role in S. typhimurium invasion, but are not involved in intracellular Salmonella-induced actin assembly, and suggest that actin assembly by intracellular S. typhimurium may proceed by a novel mechanism.  相似文献   

20.
Invasion of epithelial cells by Salmonella enterica is mediated by bacterial "effector" proteins that are delivered into the host cell by a type III secretion system. Although primarily known for their roles in actin rearrangements and membrane ruffling, translocated effectors also affect host cell processes that are not directly associated with invasion. Here, we show that SopB/SigD, an effector with phosphoinositide phosphatase activity, has anti-apoptotic activity in Salmonella-infected epithelial cells. Salmonella induced the sustained activation of Akt/protein kinase B, a pro-survival kinase, in a SopB-dependent manner. Failure to activate Akt resulted in increased levels of apoptosis after infection with a sopB deletion mutant (DeltasopB). Furthermore, cells infected with wild type bacteria, but not the DeltasopB strain, were protected from camptothecin-induced cleavage of caspase-3 and subsequent apoptosis. The anti-apoptotic activity of SopB was dependent on its phosphatase activity, because a catalytically inactive mutant was unable to protect cells from the effects of camptothecin. Finally, small interfering RNA was used to demonstrate the essential role of Akt in SopB-mediated protection against apoptosis. These results provide new insights into the mechanisms of apoptosis and highlight how bacterial effectors can intercept signaling pathways to manipulate host responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号