首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
One hundred and sixty-four accessions representing Czech and Slovak pea (Pisum sativum L.) varieties bred over the last 50 years were evaluated for genetic diversity using morphological, simple sequence repeat (SSR) and retrotransposon-based insertion polymorphism (RBIP) markers. Polymorphic information content (PIC) values of 10 SSR loci and 31 RBIP markers were on average high at 0.89 and 0.73, respectively. The silhouette method after the Ward clustering produced the most probable cluster estimate, identifying nine clusters from molecular data and five to seven clusters from morphological characters. Principal component analysis of nine qualitative and eight quantitative morphological parameters explain over 90 and 93% of total variability, respectively, in the first three axes. Multidimensional scaling of molecular data revealed a continuous structure for the set. To enable integration and evaluation of all data types, a Bayesian method for clustering was applied. Three clusters identified using morphology data, with clear separation of fodder, dry seed and afila types, were resolved by DNA data into 17, 12 and five sub-clusters, respectively. A core collection of 34 samples was derived from the complete collection by BAPS Bayesian analysis. Values for average gene diversity and allelic richness for molecular marker loci and diversity indexes of phenotypic data were found to be similar between the two collections, showing that this is a useful approach for representative core selection.  相似文献   

3.
The optimisation of polymerase chain reaction (PCR) for random amplified polymorphic DNA (RAPD) analysis in pea was investigated and the results were applied to an analysis of five representative Australian varieties and five selected boron-tolerant accessions derived from different geographical regions. Genotypes were compared using 34 random primers (Operon Technologies, Alameda, CA) which generated 180 polymorphic bands. Genetic similarity among genotypes was estimated on the basis of the percentage of common bands between genotypes and a dendrogram was constructed by the unweighted pair grouping method. A pattern of RAPD reaction corresponding to two main groups was discerned. The genetic divergence between Australian varieties and the boron-tolerant accessions suggests an intensive back-crossing programme would be required to transfer boron tolerance to a locally adapted genetic background. Our results show RAPD to be useful for clarifying phylogenic relationships within a species and also to provide useful genetic markers for varietal identification in pea.  相似文献   

4.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

5.
Koveza OV  Gostimskiĭ SA 《Genetika》2005,41(11):1522-1530
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism type.  相似文献   

6.
We characterized 13 accessions of dry peas of different origins from various growing regions in Argentina, based on three replications of 20 plants cultivated in 2009 and 2010 in a greenhouse, with the objective of selecting those with favorable characteristics for use in breeding programs. Significant differences were found for length and width of stipule and pod, length of the internodes and leaflets, plant height, total number of nodes, number of nodes at the first pod, number of days to flowering and to harvest, number of pods and seeds per pod, 100-seed weight and grain diameter, demonstrating a high degree of genetic variability. Phenotypic correlation analysis demonstrated that large pods produced more seeds per pod, but the seed weight decreased. Plants with smaller number of nodes in the first pod were more productive. Estimates of genotypic correlation coefficients indicated a strong inherent association among the different traits. Clustering methods grouped the accessions into five clusters. Cluster 5 included two accessions and showed the highest values for length and width of stipules (4.9 and 4.5 cm, respectively), length of leaflets (7.43 cm) and days to flowering (122.6), while cluster 3, with one accession, and cluster 4, with two accessions, showed the highest values for number of seeds per pod (3.78 and 4.39), number of pods per plant (5.33 and 5.70), length of pods (5.54 and 5.72 cm), and width of pods (1.21 and 1.20 cm, respectively). We conclude that accessions in clusters 3 and 4 would be useful for crosses with other cultivars in pea breeding programs.  相似文献   

7.
Powdery mildew is a common disease of field pea, Pisum sativum L., and is caused by the ascomycete fungus Erysiphe pisi. It can cause severe damage in areas where pea is cultivated. Today breeders want to develop new pea lines that are resistant to the disease. To make the breeding process more efficient, it is desirable to find genetic markers for use in a marker-assisted selection (MAS) strategy. In this study, microsatellites (SSR) were used to find markers linked to powdery mildew resistance. The resistant pea cultivar '955180' and the susceptible pea cultivar 'Majoret' were crossed and F2 plants were screened with SSR markers, using bulked segregant analysis. A total of 315 SSR markers were screened out of which five showed linkage to the powdery mildew resistance gene. No single marker was considered optimal for inclusion in a MAS program. Instead, two of the markers can be used in combination, which would result in only 1.6% incorrectly identified plants. Thus SSR markers can be successfully used in marker-assisted selection for powdery mildew resistance breeding in pea.  相似文献   

8.
Various pea cultivars, lines, and mutants were studied by the RAPD method. Polymorphic fragments characteristic of certain pea genotypes and which can be used for identifying genotypes were detected. Inheritance of some polymorphic RAPD fragments was studied. Mendelian inheritance of these fragments was shown. By analyzing the data obtained in studies of RAPD polymorphism, genetic distances between different pea cultivars, lines, and mutants were calculated and a genealogic dendogram showing a varying extent of differences between RAPD patterns was constructed. Ten new RAPD markers linked to various pea genes were detected. Genetic distances between RAPD markers and genes to which they are linked were calculated, and the respective disposition of RAPD markers on chromosomes was established.  相似文献   

9.
Some esterases of the pea (Pisum sativum L.)   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
Explants fromPisum sativum shoot cultures and epicotyls were transformed by cocultivation withAgrobacterium tumefaciens vectors carrying plant selectable markers and transformants could be selected on a medium containing kanamycin. Transformants could also be obtained at a low frequency by cocultivating small protoplast-derived colonies. The transformed nature of the calli obtained from selection was confirmed by opine assay and DNA analysis. In addition five cultivars of pea were tested for their response to seven differentAgrobacterium tumefaciens strains. The response pattern coincided largely between the different pea cultivars, being more dependent on the bacterial strain than the cultivar used.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - Km kanamycin - NAA -naphthaleneacetic acid - NOS nopaline synthase - NPT neomycin phosphotransferase - OCS octopine synthase  相似文献   

12.
We estimated the genetic diversity of 49 accessions of the hot pepper species Capsicum chinensis through analyses of 12 physicochemical traits of the fruit, eight multi-categorical variables, and with 32 RAPD primers. Data from the physicochemical traits were submitted to analysis of variance to estimate the genetic parameters, and their means were clustered by the Scott-Knott test. The matrices from the individual and combined distance were estimated by multivariate analyses before applying Tocher's optimization method. All physicochemical traits were examined for genetic variability by analysis of variance. The responses of these traits showed more contribution from genetic than from environmental factors, except the percentage of dry biomass, content of soluble solids and vitamin C level. Total capsaicin had the greatest genetic divergence. Nine clusters were formed from the quantitative data based on the generalized distance of Mahalanobis, using Tocher's method; four were formed from the multi-categorical data using the Cole-Rodgers coefficient, and eight were formed from the molecular data using the Nei and Li coefficient. The accessions were distributed into 14 groups using Tocher's method, and no significant correlation between pungency and origin was detected. Uni- and multivariate analyses permitted the identification of marked genetic diversity and fruit attributes capable of being improved through breeding programs.  相似文献   

13.
To estimate genetic relationships among 46 local grape cultivars, RAPD analysis was performed with 25 decamer primers selected from a total of 60 primers. Genetic relationships among these cultivars were determined by calculating similarity indexes, from which a dendogram was derived. There was high genetic variation among the cultivars, with values of genetic diversity ranging from 0.553 to 0.952 using the Jaccard coefficient. UPGMA analysis of a distance matrix produced a dendogram with six clusters. The relatively high genetic similarity ratios observed for the cultivars was also reflected in the dendogram. In general, no relationship was encountered between the genetic similarity ratios of the cultivars and the results of previous ampelographic analyses.  相似文献   

14.
Persimmon (Diospyros L.) is one of the most important fruits worldwide and it has been recognized as a health nutrient supply for human consumption. In this study, sequence-related amplified polymorphism (SRAP) markers were used to characterize the genetic diversity of seven species of Persimmon, aiming at exploiting valuable wild resources for breeding new cultivars. Our results show that 303 out of a total of 303 bands amplified with 11 SRAP primer combinations reveal highly polymorphism. The 48 genotypes of persimmons were divided into five groups using the unweighted pair-group method of arithmetic average cluster analysis and principal coordinated analysis. The clusters results show that not only interspecies among seven persimmon genus, but also inner-species of each genus could be clearly differentiated. The phylogenetics positions of Deyang yeshi, Yemaoshi and Jinzaoshi have been elucidated. The results also indicated that wild Chinese persimmon species bear diverse genetic makeup.  相似文献   

15.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

16.
Summary Polyclonal antibodies against a part of pea (Pisum sativum L.) LOXG protein have been raised to study the pattern of distribution of related lipoxygenases in pea carpels. The antiserum recognized three lipoxygenase polypeptides in carpels. One of them became undetectable 24 hours after fruit development induction, suggesting that it may correspond to the protein derived from loxg cDNA. Immunolocalization experiments showed that lipoxygenase protein was present only in pod tissues: it was abundant in the mesocarp and, from the day of anthesis, in the endocarp layers. Lipoxygenase distribution is regulated throughout development. The association of lipoxygenase with cells in which processes of expansion and growth will potentially take place support a role in pod growth and development.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - IgG immunoglobulin G - GA3 gibberellic acid - LOX lipoxygenase - PAGE polyacrylamide gel - PVDF polyvinylidene difluoride - SDS sodium dodecyl sulfate - Tris 2-amino-2-hydroxymethyl-1,3-propanediol  相似文献   

17.
We assessed the genetic diversity in Trichloris crinita (Poaceae) varieties from South America, using AFLPs, morphological characters, and quantitative agronomic traits. Owing to the importance of this species for range grazing, we first characterized the varieties based on forage productivity. Biomass production varied 9 fold among the materials evaluated. Analysis of AFLP fingerprints allowed the discrimination of all varieties with a few selected primer combinations. Pair-wise genetic similarities, using marker data, ranged from 0.31 to 0.92 (Jaccard coefficients). Marker-based unweighted pair group method with arithmetic averaging (UPGMA) cluster analysis did not show geographical clustering, but rather grouped the varieties according to their biomass production. We identified 18 markers associated with biomass production, of which 8 showed complete correlation (r = 1.00) with this trait. These DNA markers can be used to assist selection for high forage productivity in T. crinita. Cluster analysis using morphological and quantitative characters revealed 4 distinct groups of varieties, clearly separated according to their biomass yield. The variables foliage height and basal diameter were strongly correlated with biomass production and these phenotypic markers can be used to select productive plants. The relations among the varieties based on AFLP data were significantly correlated with those based on agronomic and morphological characters, suggesting that the 2 systems give similar estimates of genetic relations among the varieties.  相似文献   

18.
Pea (Pisum sativum L.) is an important legume crop that is widely grown worldwide for human consumption and livestock feed. Despite extensive studies, the population genetic structure and classification of cultivated and wild pea (Pisum sp.) remain controversial. To characterize patterns of genetic and morphological variation and investigate the classification of Pisum, we conducted comprehensive population genetic analyses for 323 accessions from cultivated and wild pea, representing three species of Pisum and utilizing 34 morphological traits and 87 polymorphic simple sequence repeat markers. First, we identified three distinct genetic groups among all samples. Group I was primarily composed of Pisum fulvum, Pisum abyssinicum, and some wild P. sativum accessions, whereas Groups II and III consisted of the two genetic groups under P. sativum that represented different geographic distributions of cultivated pea. Analyses of morphological variation revealed significant differences among the three species. Second, among pea germplasms representing eight taxa of Pisum, P. fulvum and P. abyssinicum possessed unique genetic backgrounds and morphological characteristics, corroborating their independent species status. The intraspecific subdivisions of P. sativum described by some authors were not supported in this study, with the exception of several genotypes of P. sativum subsp. elatius that clustered with P. fulvum and P. abyssinicum. Finally, we confirmed that the Chinese pea germplasm was genetically distinct and could be divided into two genetic groups, each of which included both spring-sowing and autumn-sowing ecotypes. These results provide a robust foundation for understanding pea domestication and the utilization of wild genetic resources of pea.  相似文献   

19.
Large numbers of viable protoplasts of pea (Pisum sativum) and grass pea (Lathyrus sativus) were efficiently and reproducibly obtained and, for the first time, fused. Different procedures for fusion were compared, based either on electrofusion (750, 1000, 1250 or 1500 V cm(-1)), or on the use of macro or micromethods with a polyethylene glycol (PEG 6000 or PEG 1540), or a glycine/high pH solution. Over 10% of viable heterokaryons were obtained, with PEG as the most efficient and reproducible agent for protoplast fusion (>20% of viable heterokaryons). Both the division of heterokaryons and the formation of small calluses were observed.  相似文献   

20.
Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号