首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Genetika》2006,42(4):507-518
The parameters for delivery of expression cassettes to cells of wheat morphogenic callus induced from immature embryos were optimized. Three systems (gradation, delayed, and regeneration) for in vitro selection of transgenic wheat tissue using the bar gene, providing resistance to the herbicide phosphinothricin (PPT), were compared. The efficiency of gene delivery to the cells competent for plant regeneration was assessed by comparing the number of spots transiently expressing uidA gene (encoding beta-glucuronidase) per unit surface of the morphogenic calluses treated under various conditions. The selection systems in question were evaluated by comparing the transformation efficiency frequencies. The optimal parameters for wheat biolistic transformation using a particle inflow gun were determined, namely, the distance between the particle source and the target tissue (12 cm) and helium pressure during the shot (6 atm). The optimal time of callus tissue development on the medium inducing callus formation was determined (10-14 days). Comparison of the three selection variants demonstrated that the regeneration system was the most efficient for producing true transgenic plants of common wheat.  相似文献   

2.
Gao C  Long D  Lenk I  Nielsen KK 《Plant cell reports》2008,27(10):1601-1609
Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.  相似文献   

3.
Amenability to tissue culture stages required for gene transfer, selection and plant regeneration are the main determinants of genetic transformation efficiency via particle bombardment into sugarcane. The technique is moving from the experimental phase, where it is sufficient to work in a few amenable genotypes, to practical application in a diverse and changing set of elite cultivars. Therefore, we investigated the response to callus initiation, proliferation, regeneration and selection steps required for microprojectile-mediated transformation, in a diverse set of Australian sugarcane cultivars. 12 of 16 tested cultivars were sufficiently amenable to existing routine tissue-culture conditions for practical genetic transformation. Three cultivars required adjustments to 2,4-D levels during callus proliferation, geneticin concentration during selection, and/or light intensity during regeneration. One cultivar gave an extreme necrotic response in leaf spindle explants and produced no callus tissue under the tested culture conditions. It was helpful to obtain spindle explants for tissue culture from plants with good water supply for growth, especially for genotypes that were harder to culture. It was generally possible to obtain several independent transgenic plants per bombardment, with time in callus culture limited to 11–15 weeks. A caution with this efficient transformation system is that separate shoots arose from different primary transformed cells in more than half of tested calli after selection for geneticin resistance. The results across this diverse cultivar set are likely to be a useful guide to key variables for rapid optimisation of tissue culture conditions for efficient genetic transformation of other sugarcane cultivars.  相似文献   

4.
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4°C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10–14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.  相似文献   

5.
草坪草生物技术研究进展   总被引:3,自引:0,他引:3  
概述了草坪草植株再生体系和遗传转化体系建立的方法和进展.通过愈伤组织培养、悬浮细胞培养和原生质体培养方法对草坪草的一些种已建立较为完善的植株再生体系.在建立再生体系的基础上,利用原生质体融合、农杆菌介导、基因枪和碳化硅纤维介导等转基因方法在一些草坪草种上建立了遗传转化体系并获得了有一定价值的转基因植株.最后,对草坪草转基因存在的问题和前景作了讨论.  相似文献   

6.
Transgenic rice embryogenic callus and plants were recovered from experiments involving electric discharge particle acceleration (AccellTM technology). Critical parameters influencing successful delivery and stable integration of exogenous DNA into organized rice tissue had been identified previously. We report here on the effects of one selective agent (hygromycin B) on the phenotype and genotype of recovered callus and plants. The nature, timing and culture practices appeared to be more critical for the successful recovery of transgenic callus and plants than the level of selection used. By utilizing the procedures described in this report, transformation frequencies well in excess of 10% were obtained routinely in all varieties of rice tested. The combination of AccellTM technology with a selectable and prolific regeneration culture system resulted in the development of a variety-independent and highly efficient method for the routine introduction of any gene into any rice variety.  相似文献   

7.
Turmeric (Curcuma longa L.) is a rhizomatous species belonging to the Zingiberaceae and known both for its culinary and medicinal uses. Based on an efficient tissue culture and somatic embryogenesis system that we established, we have developed a reliable Agrobacterium-mediated transformation protocol for this species. Calli derived from turmeric inflorescences were used as source tissues for transformation. Factors affecting transformation and regeneration efficiency were evaluated, including callus induction and culture conditions, Agrobacterium strains, co-cultivation conditions, selection agent sensitivity and bacterial elimination, and transformant selection. Optimized transformation conditions were identified, including: use of Agrobacterium strain EHA105 with plasmid pBISN1 for infection; a modified B5 medium system for callus induction, subculture, co-culture and selection; and MS media for transformant regeneration. Transgenic plants and their vegetative (clonal) progeny stably expressed the transgene as indicated by GUS assay, PCR and Southern blot analysis. In addition, a transient gene expression system was developed that involves Agrobacterium infiltration of young turmeric leaves followed by in vitro regeneration of plantlets. This approach established that a MADS-box-GFP fusion protein was localized to the nucleus of turmeric cells. The stable transformation and transient expression systems described herein offer opportunities for assaying gene function in turmeric and for improving turmeric properties.  相似文献   

8.
 A method for producing large numbers of transgenic wheat plants has been developed. With this approach, an average of 9.7% of immature embryo explants were transformed and generated multiple self-fertile, independently transformed plants. No untransformed plants, or escapes, were regenerated. This transformation procedure uses morphogenic calli derived from scutellum tissue of immature embryos of Triticum aestivum cv. Bobwhite co-bombarded with separate plasmids carrying a selectable marker gene (bar) and a gene of interest, respectively. Transformed wheat calli with a vigorous growth phenotype were obtained by extended culture on media containing 5.0 mg/l bialaphos. These calli retained morphogenic potential and were competent for plant regeneration for as long as 11 months. The bar gene and the gene of interest were co-expressed in T0 progeny plants. This wheat transformation protocol may facilitate quantitative production of multiple transgenic plants and significantly reduce the cost and labor otherwise required for screening out untransformed escapes. Received: 15 June 1998 / Revision received: 6 April 1999 / Accepted: 26 April 1999  相似文献   

9.
Agrobacterium tumefaciens-mediated transformation of callus culture, combined with a visual selection of GFP-tagged fimbrin actin binding domain (FABD2) expression is described for parasitic species (Cuscuta europaea). The conditions for callus induction from 1 cm-long explants from the basal part of 7-day-old dodder seedlings were defined. We obtained light-green calli, which were transformed with A. tumefaciens bacterial strain GV3101 carrying plasmid pCB302 (35S::ABD2:gfp) with neomycin phosphotransferase (nptII) gene. The limitations of selection procedures based on antibiotics were avoided using green fluorescent protein (GFP) detection, as a visual selection marker subcellularly targeted to the actin cytoskeleton. Fluorescence microscopy analyses demonstrated a network of nucleus-associated actin arrays and dense cortical actin arrangements in stably transformed Cuscuta callus cells. RT-PCR analyses confirmed gfp expression in transformed calli 7, 14 and 21 days after transformation. Although the GFP fluorescence associated with the actin cytoskeleton has retained for at least six months without silencing, no shoot regeneration was observed. It can be concluded that, C. europaea callus cells are competent for transformation, but under given conditions, these cells failed to realize their morphogenic and regeneration potentials.  相似文献   

10.
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4 degrees C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10-14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.  相似文献   

11.
小麦(Triticum aestivum)幼胚愈伤组织的诱导和分化再生有高度依赖基因型特征。为了建立和优化Alondra’s的高效再生及遗传转化体系,为小麦遗传转化提供更多的受体基因型,以Alondra’s的幼胚为外植体,研究了培养基种类、不同激素配比等对其幼胚愈伤组织诱导及再生的影响。结果表明,在使用N6培养基时,添加3mg·L^-1的2,4-D并附加1000mg·L^-1的CH对愈伤组织的诱导效果较好;添加4mg·L^-1的ZT、不附加IAA对愈伤组织的分化效果最好。通过构建植物表达载体pCAMBIA1301-220.6,利用基因枪法将HYG基因导入Alondra’s幼胚愈伤组织中,以建立Alondra’s的高效遗传转化体系。结果在含100mg·L^-1潮霉素的选择培养基上进行筛选、分化,获得了30棵抗性植株。经PCR检测,其中5株为阳性转基因植株,转化率为0.5%。Alondra's遗传转化体系的建立丰富了小麦遗传转化的基因型,为小麦品种的转基因改良和在不同背景下研究基因的功能奠定了良好的基础。  相似文献   

12.
We have developed an efficient rice transformation system that uses only rice genome-derived components. The transgenic ‘Koshihikari’ rice, low-glutelin mutant a123, is capable of accumulating large amounts of bioactive peptides in the endosperm. Agrobacterium-mediated transformation using the mutated-acetolactate synthase (mALS) gene expressed under the control of the callus-specific promoter (CSP) as a selectable marker was used to introduce GFP and an anti-hypertensive hexapeptide into ‘Koshihikari’ a123. The CSP:mALS gene cassette confers pyrimidinyl carboxy herbicide resistance to transgenic rice callus, but is not expressed in regenerated plants. Transformation efficiency of transgenic rice line a123 was improved from about 10% to about 30% by modifying callus induction, callus selection and regeneration media conventionally used for rice tissue culture. An erratum to this article can be found at  相似文献   

13.
14.
小麦(Triticum aestivum)幼胚愈伤组织的诱导和分化再生有高度依赖基因型特征。为了建立和优化Alondra’s的高效再生及遗传转化体系, 为小麦遗传转化提供更多的受体基因型, 以Alondra’s的幼胚为外植体, 研究了培养基种类、不同激素配比等对其幼胚愈伤组织诱导及再生的影响。结果表明, 在使用N6培养基时, 添加3 mg·L–1的2,4-D并附加1 000 mg·L–1的CH对愈伤组织的诱导效果较好; 添加4 mg·L–1的ZT、不附加IAA对愈伤组织的分化效果最好。通过构建植物表达载体pCAMBIA1301-220.6, 利用基因枪法将HYG基因导入Alondra’s幼胚愈伤组织中, 以建立Alondra’s的高效遗传转化体系。结果在含100 mg·L–1潮霉素的选择培养基上进行筛选、分化, 获得了30棵抗性植株。经PCR检测, 其中5株为阳性转基因植株, 转化率为0.5%。Alondra's遗传转化体系的建立丰富了小麦遗传转化的基因型, 为小麦品种的转基因改良和在不同背景下研究基因的功能奠定了良好的基础。  相似文献   

15.
A protocol for biolistic transformation of bread wheat based on using mature seed tissues as explants has been developed. Embryogenic callus obtained from mature seed tissues was transformed with a psGFP-BAR plasmid containing gfp reporter gene and bar selectable marker gene. The influence of hormone composition of the medium on the efficiency of transformation of mature wheat seed tissues has been demonstrated. The use of auxin 2,4-D resulted in the formation of transgenic plants with a frequency of 0.75%, while the use of Dicamba auxin for the regeneration of plants did not result in transformant development. The transgenic status of the plants obtained in the experiments has been confirmed by PCR and RT-PCR. Stable inheritance of transgenic features in the following generations of wheat (T1, T2) has been demonstrated and transgenic plants exhibiting high resistance to herbicides have been obtained. The protocol developed allows for a simplified transformation of wheat in order to obtain transgenic plants with novel features.  相似文献   

16.
Successful genetic transformation of plants requires non-chimeric selection of transformed tissues and their subsequent regeneration. With rare exceptions, most transformation protocols still rely heavily on antibiotics for selecting transgenic cells that contain an antibiotic-degrading selectable marker gene. Here, the morphogenic capacity of in-vitro expiants of chrysanthemum and tobacco stems and leaves (control and transgenic) changed with the addition of aminoglycoside antibiotics (AAs). In a test of 6 AAs, phytotoxicity occurred at concentrations of 10 to 25 and 50 to 100 ng ml.−1 in chrysanthemum and tobacco expiants, respectively. Light conditions as well as expiant source and size also had significant effects. The use of transverse thin cell layers (tTCLs), in conjunction with high initial AA selection levels, supported the greatest regeneration of transgenic material (adventitious shoots or callus) and the lowest number of escapes. Flow-cytometric analyses revealed no endoduplication in chrysanthemum, even at high AA levels. However, this phenomenon was observed in tobacco calli (8C or more), even at low AA concentrations (i.e., 5 to 10 μg mL-1).  相似文献   

17.
Selection genes are routinely used in plant genetic transformation protocols to ensure the survival of transformed cells by limiting the regeneration of non-transgenic cells. In order to find alternatives to the use of antibiotics as selection agents, we followed a targeted approach utilizing a plant gene, encoding a mutant form of the enzyme acetolactate synthase, to convey resistance to herbicides. The sensitivity of sugarcane callus (Saccharum spp. hybrids, cv. NCo310) to a number of herbicides from the sulfonylurea and imidazolinone classes was tested. Callus growth was most affected by sulfonylurea herbicides, particularly 3.6 μg/l chlorsulfuron. Herbicide-resistant transgenic sugarcane plants containing mutant forms of a tobacco acetolactate synthase (als) gene were obtained following biolistic transformation. Post-bombardment, putative transgenic callus was selectively proliferated on MS medium containing 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 20 g/l sucrose, 0.5 g/l casein, and 3.6 μg/l chlorsulfuron. Plant regeneration and rooting was done on MS medium lacking 2,4-D under similar selection conditions. Thirty vigorously growing putative transgenic plants were successfully ex vitro-acclimatized and established under glasshouse conditions. Glasshouse spraying of putative transgenic plants with 100 mg/l chlorsulfuron dramatically decreased the amount of non-transgenic plants that had escaped the in vitro selection regime. PCR analysis showed that six surviving plants were als-positive and that five of these expressed the mutant als gene. This report is the first to describe a selection system for sugarcane transformation that uses a selectable marker gene of plant origin targeted by a sulfonylurea herbicide.  相似文献   

18.
Summary Here we present a routine and efficient protocol for year-round production of fertile transgenic maize plants. Type II callus derived from maize Hi II immature zygotic embryos was transformed using the PDS 1000/He biolistic gun and selected on bialaphos. In an effort to improve the transformation protocol, the effects of gold particle size and callus morphology on transformation efficiency were investigated. Reducing gold particle size from 1.0 μm or 0.6 μm resulted in a significant increase in the rate of recovery of bialaphos-resistant clones from Type II callus. The average transformation efficiency of pre-embryogenic, early embryogenic and late embryogenic callus did not vary significantly. Rates of transformation, regeneration and fertility achieved for Type II callus are summarized and compared to those achieved for greenhouse- and field-derived immature zygotic embryos.  相似文献   

19.
Mature seed‐derived callus from an elite Chinese japonica rice cv. Eyl 105 was transformed with a plasmid containing the selectable marker hygromycin phosphotransferase (hpt) and the reporter β‐glucuronidase (gusA) genes via particle bombardment. After two rounds of selection on hygromycin (30 mg/l)‐containing medium, resistant callus was transferred to hygromycin (30 mg/l)‐containing regeneration medium for plant regeneration. Twenty‐three independent transgenic rice plants were regenerated from 127 bombarded callus with a transformation frequency of 18.1%. All the transgenic plants contained both gusA and hpt genes, revealed by PCR/Southern blot analysis. GUS assay revealed 18 out of 23 plants (78.3%) proliferated on hygromycin‐containing medium had GUS expression at various levels. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parent plants showing 3:1 Mendelian segregation, we identified three independent homozygous transgenic rice lines. The homozygous lines were phenotypically normal and fertile compared to the control plants. We demonstrate that homozygous transgenic rice lines can be obtained via particle bombardment‐mediated transformation and through genetic analysis‐based selection.  相似文献   

20.
A protocol is presented for efficient transformation and regeneration of cotton. Embryogenic calli co-cultivated with Agrobacterium carrying cry1Ia5 gene were cultured under dehydration stress and antibiotic selection for 3–6 weeks to generate several transgenic embryos. An average of 75 globular embryo clusters were observed on selection plates and these embryos were cultured on multiplication medium followed by development of cotyledonary embryos on embryo maturation medium to obtain an average of 12 plants per Petri plate of co-cultivated callus. About 83% of these plants have been confirmed to be transgenic by Southern blot analysis. An efficiency of ten kanamycin-resistant plants per Petri plate of co-cultivated embryogenic callus was obtained. The simplicity of the procedure and the efficiency of the initial material allow transformation of any variety where a single regenerating embryogenic callus line can be obtained. In addition, multiple transformations can be performed either simultaneously or sequentially. The method is extremely simple, reliable, efficient, and much less laborious than any other existing method for cotton transformation.V.G. Sunnichan and R. Kumria contributed equally to this investigation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号