首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made of environmental and genetic factors affecting the quantity and disposition of the alcohol dehydrogenase (ADH) protein in Drosophila melanogaster. It was found that the amount of enzyme per fly is greatly influenced by the environmental conditions in which it develops. A critical factor is the concentration of yeast in the medium. A high concentration of yeast can double the quantity of ADH. The yeast appears to act through the provision of protein, and the protein to act through the provision of threonine, which is already known to induce ADH in fungi. Various genetic factors affect the quantity of enzyme. Males have more ADH than females. Files homozygous for the Fast allele have more ADH than those homozygous for the slow allele, and the difference is greater in females than in males. One particular line (ve), homozygous for Slow, has approximately half the normal quantity of enzyme, and the quantity segregates with the electrophoretic allele. Lines differ in the relative amounts of ADH in the gut (including Malpighian tubules) and the fat body. In general it seems that slow lines have relatively more enzyme in the fat body. In a cross between ve and a line homozygous to Fast, the difference in tissue distribution segregated with the electrophoretic allele. It is argued, but not demonstrated, that the differences in quantity and tissue distribution are due to nucleotide substitutions in noncoding regions close to, or within, the structural gene. It seems likely that the observed environmental and genetic differences in the quantity and disposition of ADH will influence the relative selective values of the electrophoretic genotypes.  相似文献   

2.
Naturally infected rabbits (Oryctolagus) were used to define further the nature of the immune response in myiasis due to Cuterebra buccata. Third instar larvae were dissected into four fractions; (1) alimentary tract with attached organs, (2) hemolymph, (3) fat body with tracheae, and (4) cuticle with attached muscles. The antigens provoking immune phenomena in naturally infected rabbits were found to reside in the alimentary tract and hemolymph fractions only. All rabbits which were skin tested were found to exhibit delayed hypersensitivity and to have serum precipitins with specificity against these antigens. Passive cutaneous anaphylaxis activity was demonstrated only in sera from rabbits also exhibiting reaginic and/or Arthus-type skin hypersensitivities. With the use of immunoelectrophoresis four separate antigens were demonstrated in alimentary tract fractions. Larval dissections revealed the alimentary tract to be filled with cellular elements of rabbit whole blood. The immunologic findings are discussed in relation to this newly recognized feeding pattern and it is proposed that sensitization of the host occurs as a consequence of exogenous larval secretions injected at the time of feeding.  相似文献   

3.
On the basis of allyalcohol resistance, Saccharomyces cerevisiae mutanta were isolated that were deficient in alcohol dehydrogenase (ADH). The mutants were divided into three classes by their different ADH isozyme pattern obtained after starch-gel electrophoresis: adc mutants that did not produce the constitutive ADH, adr mutants from which the glucose repressible enzyme (ADHII) was absent, and adm mutants deficient in ADH activity associated with the mitochondria.Genetic analysis showed that two genes control synthesis of the glucose repressible enzyme ADHII, one gene the constitutive ADHI and a fourth nuclear gene the mitochondrial ADH. None of these four genes showed any linkage.The various mutant types did not show drastic effects on yeast growth on media containing glucose or ethanol as sole carbon sources.  相似文献   

4.
Alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound quinohemoprotein-cytochrome c complex involved in vinegar production. In Gluconobacter suboxydans grown under acidic growth conditions, it was found that ADH content in the membranes was largely increased but the activity was not much changed, suggesting that such a condition produces an inactive form of ADH (inactive ADH). A similar phenomenon could be also observed in Acetobacter aceti, another genus of acetic acid bacteria. Furthermore, aeration conditions were also shown to affect ADH production; the ADH level was increased and was present as an active form under low-aeration conditions, while the ADH level was decreased and was present mainly as an inactive form under high-aeration conditions. Inactive ADH was solubilized from the membranes of G. suboxydans grown in acidic and high-aeration conditions and was purified separately from the normal, active form of ADH (active ADH). In spite of having 10 times less enzyme activity than active ADH, inactive ADH could not be distinguished from active ADH with respect to their subunit compositions, molecular sizes, and prosthetic groups. Inactive ADH, however, had a relatively loose conformation with a partially oxidized state, while active ADH had a tight conformation with a completely reduced state, suggesting that inactive ADH may lack a right subunit's interaction and that one of the heme c components may be inactivated. Reactivation from such an inactive ADH occurred either by shifting of the pH of the culture medium up during the cultivation or by incubation of the resting cells at the neutral pH region in the presence of an energy source such as D-sorbitol. Such an activation of ADH was repressed by the addition of a proton uncoupler and could not occur in the spheroplasts. Thus, the results suggest that inactive ADH could be generated abundantly under acidic growth conditions and converted to the active form at a neutral culture pH. The data also suggest that some periplasmic component may be involved in the conversion of inactive ADH into the active form by consuming some forms of energy.  相似文献   

5.
Replacement of chemical steps with biocatalytic ones is becoming increasingly more interesting due to the remarkable catalytic properties of enzymes, such as their wide range of substrate specificities and variety of chemo-, stereo- and regioselective reactions. This study presents characterisation of an alcohol dehydrogenase (ADH) from the halophilic archaeum Halobacterium sp. NRC-1 (HsADH2). A hexahistidine-tagged recombinant version of HsADH2 (His-HsADH2) was heterologously overexpressed in Haloferax volcanii. The enzyme was purified in one step by immobilised Ni-affinity chromatography. His-HsADH2 was halophilic and mildly thermophilic with optimal activity for ethanol oxidation at 4 M KCl around 60 °C and pH 10.0. The enzyme was extremely stable, retaining 80 % activity after 30 days. His-HsADH2 showed preference for NADP(H) but interestingly retained 60 % activity towards NADH. The enzyme displayed broad substrate specificity, with maximum activity obtained for 1-propanol. The enzyme also accepted secondary alcohols such as 2-butanol and even 1-phenylethanol. In the reductive reaction, working conditions for His-HsADH2 were optimised for acetaldehyde and found to be 4 M KCl and pH 6.0. His-HsADH2 displayed intrinsic organic solvent tolerance, which is highly relevant for biotechnological applications.  相似文献   

6.
Previously, the single nucleotide polymorphism in alcohol dehydrogenase (ADH1C c.-64T>C) was shown to have an association with intramuscular fat (IMF) in the longissimus thoracis (LT) muscle when vitamin A was limited in finishing rations of beef steers. The purpose of this study was to determine the optimum vitamin A supplementation level, in combination with ADH1C genotype, to increase IMF of the LT muscle. In total, 45 TT genotype, 45 CT and 27 CC Black Angus crossbred steers were backgrounded on a commercial ration containing 3360 IU vitamin A/kg dry matter (DM). During finishing, the steers were randomly assigned to one of three vitamin A treatments at 25%, 50% and 75% of the National Research Council recommendation of 2200 IU/kg DM. Treatments were administered via an oral bolus. Carcass quality was evaluated and a sample from the LT muscle was collected for analysis of IMF. A treatment×genotype interaction (P=0.04) was observed for IMF; TT steers on the 75% treatment had higher IMF relative to CT and CC steers on the same treatment. Western blot analysis showed that TT steers had higher (P=0.02) ADH1C protein expression in hepatic tissue. Previously, TT steers exhibited increased IMF when fed limited vitamin A. In the current study, the lack of variation in IMF between treatments and genotypes at the lower vitamin A treatment levels was likely due to the majority of the steers grading Canada AAA (USDA Choice). However, the western blot data supports that TT steers are expected to have higher IMF deposition, due to an increased production of ADH1C. The interaction between ADH1C genotype and vitamin A supplementation level has the potential for use in marker-assisted management programs to target niche markets based on increased marbling.  相似文献   

7.
8.
M Tsukahara  A Yoshida 《Genomics》1989,4(2):218-220
Human class I alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1; ADH) is the major enzyme involved in ethanol oxidation. Three highly homologous genes govern the synthesis of three types of subunits which form several ADH isozymes. The locus for class I ADH loci was previously assigned to q21-25 of chromosome 4 by somatic cell hybridization techniques. Analysis of grain positions by in situ hybridization of chromosomes indicated that the ADH cluster locus is on 4q21-23, probably 4q22.  相似文献   

9.
In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1 mutant was not found to differ from cv Himalaya. We suggest that although the ADH plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue.  相似文献   

10.
Studies of the isozymes produced by alternative alleles at the alcohol dehydrogenase locus of Drosophila melanogaster indicate that the ADH F enzyme is more active but less stable than the ADHS enzyme. The difference in stability is manifested in the responses to various conditions of temperature, pH, and protein concentration. The two enzymes also appear to differ in their substrate specificities. It is clear that the differences of primary structure involved in the ADH polymorphism can have profound effects on the biological activity of the molecule.  相似文献   

11.
Pinsker W  Sperlich D 《Genetics》1984,108(4):913-926
Enzyme loci located on chromosome J and U were mapped cytologically by means of a Y translocation technique. A linkage map of the two chromosomes was established in a parallel experiment and the recombination frequency in different regions of the chromosomes determined. A comparison of the cytogenetic localization of the enzyme genes in D. subobscura and D. melanogaster indicates that many paracentric inversions must have taken place in the course of divergent evolution. However, no displacements of genes from one element to another due to pericentric inversions, reciprocal translocations or transposing elements can be observed. In spite of the large number of structural rearrangements that have occurred in the phylogeny of the genus Drosophila, gross similarities of banding pattern in homologous regions of the chromosomes of the two species become apparent.  相似文献   

12.
Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity.

Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2.

In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly.

Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2.

We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and that whereas the ADH system of barley has strong similarities to that of maize, it also has some distinctive features.

  相似文献   

13.
Objective: Consumption of high‐fat diet and alcohol is associated with obesity, leading to enhanced morbidity and mortality. This study was designed to examine the interaction between high‐fat diet and the alcohol metabolizing enzyme alcohol dehydrogenase (ADH) on ethanol‐induced cardiac depression. Research Methods and Procedures: Mechanical and intracellular Ca2+ properties were measured in cardiomyocytes from ADH transgenic and Friend Virus‐B type (FVB) mice fed a low‐ or high‐fat diet for 16 weeks. Expression of protein kinase B (Akt) and Foxo3a, two proteins essential for cardiac survival, was evaluated by Western blot. Cardiac damage was determined by carbonyl formation. Results: High fat but not ADH induced obesity without hyperglycemia or hypertension, prolonged time‐to‐90% relengthening (TR90), and depressed peak shortening (PS) and maximal velocity of shortening/relengthening (± dL/dt) without affecting intracellular Ca2+ properties. Ethanol suppressed PS and intracellular Ca2+ rise in low‐fat‐fed FVB mouse cardiomyocytes. ADH but not high‐fat diet shifted the threshold of ethanol‐induced inhibition of PS and ± dL/dt to lower levels. The amplitude of ethanol‐induced cardiac depression was greater in the high‐fat but not the ADH group without additive effects. Ethanol down‐ and up‐regulated Akt and Foxo3a expression, respectively, and depressed intracellular Ca2+ rise, the effects of which were exaggerated by ADH, high‐fat, or both. High‐fat diet, but not ADH, enhanced Foxo3a expression and carbonyl content in non‐ethanol‐treated mice. Ethanol challenge significantly enhanced protein carbonyl formation, with the response being augmented by ADH, high‐fat, or both. Discussion: Our data suggest that high‐fat diet and ADH transgene may exaggerate ethanol‐induced cardiac depression and protein damage in response to ethanol.  相似文献   

14.
This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.  相似文献   

15.
Genomes from a group of Drosophila melanogaster collected from a natural population at San Benito, South Texas, in March of 1975 were analyzed for the presence of male-recombination elements. All three autosomes and both sex chromosomes were examined, with emphasis placed on the two major autosomes, the second and third chromosomes. In samples of 16 second and 16 third chromosomes, at least half, but not all, of each were found to carry male-recombination elements. It is suggested, although the data are not conclusive, that some of the fourth, X, and Y chromosomes might also be associated with male-recombination elements.—When a male-recombination element, or elements, was located in the second chromosome, relatively more male recombination was induced in the second than in the third chromosome. This situation was reversed when the element(s) was located in the third chromosome.—Distortion of transmission frequency, one of the characteristics of previously studied second chromosome lines associated with male recombination, was confirmed for these second chromosomes that carried male-recombination elements. Similar, but less pronounced, distortion was observed for the third chromosome lines that carried male-recombination elements.  相似文献   

16.
17.
Birchler JA 《Genetics》1981,97(3-4):625-637
The levels of alcohol dehydrogenase (ADH) do not exhibit a structural gene-dosage effect in a one to four dosage series of the long arm of chromosome one (1L) (Birchler 1979). This phenomenon, termed dosage compensation, has been studied in more detail. Experiments are described in which individuals aneuploid for shorter segments were examined for the level of ADH in order to characterize the genetic nature of the compensation. The relative ADH expression in segmental trisomics and tetrasomics of region 1L 0.72-0.90, which includes the Adh locus, approaches the level expected from a strict gene dosage effect. Region 1L 0.20-0.72 produces a negative effect upon ADH in a similar manner to that observed with other enzyme levels when 1L as a whole is varied (Birchler 1979). These and other comparisons have led to the concept that the compensation of ADH results from the cancellation of the structural gene effect by the negative aneuploid effect. The example of ADH is discussed as a model for certain other cases of dosage compensation in higher eukaryotes.  相似文献   

18.
ADH, α-GPDH and SOD enzyme activities have been measured in lines of Drosophila melanogaster homozygous and/or heterozygous for chromosomes extracted from two different populatioi Globally the results demonstrate that factors other than structural genes are determining the observed pattern of enzyme activities. ADH and α-GPDH activities are, however, more affected than SOD by these factors. Geographic origin, sex, chromosome, genetic background of the lines, containing regulatory genes in a broad sense, can be mentioned as the more relevant factors that influencing enzyme activities. A high and significant correlation is detected between ADH and α-GPDH enzyme activities and it can be interpreted as due to linkage disequilibrium among these two loci. SOD activity shows a lesser correlation with ADH and α-GPDH because it is less variable within population, i.e. it is a more canalized character. Finally, a principal component analysis, using the three enzyme systems shows that both populations are clearly separated, with a first principal component explaining 71.1 percent of the observed variance.  相似文献   

19.
Birchler JA 《Genetics》1979,92(4):1211-1229
The enzyme activity levels of alcohol, malate, isocitrate, glucose-6-phosphate and 6-phosphogluconate dehydrogenases were determined in mature maize scutella in a series of one to four doses of the long arm of chromosome 1, produced by the B-A translocation 1La. Although the Adh structural locus was varied, ADH levels did not exhibit a gene-dosage effect. The levels of G6PDH, 6PGDH and IDH were negatively correlated with the dosage of 1L. MDH was unresponsive. The esterase-8 enzyme, whose structural locus was demonstrated to be elsewhere in the genome, was also negatively correlated with 1L dosage. The portion of the B chromosome involved in the translocation was shown to have no effect on the enzyme levels. Measurements of cell size and hydrolysable DNA per mg dry weight revealed no change in the number of cells through the one, two and three dose series. The topic of enzyme alterations in aneuploids is reviewed.  相似文献   

20.
Recent studies by various authors suggest that variation in gene regulation may be common in nature, and might be of great evolutionary consequence; but the ascertainment of variation in gene regulation has proven to be a difficult problem. In this study, we explore this problem by measuring alcohol dehydrogenase (ADH) activity in Drosophila melanogaster strains homozygous for various combinations of given second and third chromosomes sampled from a natural population. The structural locus (Adh) coding for ADH is on the second chromosome. The results show that: (1) there are genes, other than Adh, that affect the levels of ADH activity; (2) at least some of these "regulatory" genes are located on the third chromosome, and thus are not adjacent to the Adh locus; (3) variation exists in natural populations for such regulatory genes; (4) the effect of these regulatory genes varies as they interact with different second chromosomes; (5) third chromosomes with high-activity genes are either partially or completely dominant over chromosomes with low-activity genes; (6) the effects of the regulatory genes are pervasive throughout development; and (7) the third chromosome genes regulate the levels of ADH activity by affecting the number of ADH molecules in the flies. The results are consistent with the view that the evolution of regulatory genes may play an important role in adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号