首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of oxygen and solute on PGE and PGF production by rat kidney slices   总被引:2,自引:0,他引:2  
Increasing oxygen from 5% to 95% resulted in an increased production of both PGE's and PGF's. The release of prostaglandins from slices of rat kidney cortex and outer and inner medulla was measured. Prostaglandin production was observed predominantly in the inner medulla, was close to the lower limit of detection in the outer medulla, and was undetectable in the cortex. Increasing oxygen concentration resulted in a threefold increase in inner medullary prostaglandin production. Synthesis at 95% O2 was less at 2100 mOsm than at 300 mOsm, while synthesis at 5% O2 was not affected by high solute concentration. The implications of these results with respect to kidney function are discussed.  相似文献   

2.
Increasing oxygen from 5 to 95% has previously been shown to increase prostaglandin (PG) production in renal inner medullary slices. The possible role of oxidative phosphorylation in this process was investigated. The oxidative phosphorylation inhibitors, dinitrophenol (DNP), oligomycin, and cyanide were evaluated for their effects on PGE2 production and ATP levels. None of the inhibitors affected PGE2 synthesis, although they lowered ATP levels at the concentrations tested. In contrast, incubation of inner medullary tissue slices with 0% oxygen resulted in decreases both in PGE2 and ATP levels. This suggest that the effect of oxygen on prostaglandin synthesis may be due to substrate limiting effects rather an effect on oxidative phosphorylation.When 22 mM 2-deoxyglucose was added to the incubation medium or when glucose was ommitted, PGE2 levels increased. Sodium fluoride, presumably acting as a glycolytic inhibitor, increased PGE2 levels, with a maximal effect at 10mM. ATP levels were 37% of control values with 20 mM NaF. This indicates that glucose may inhibit prostaglandin synthesis.These results indicate that oxygen (substrate) availability can limit inner medullary PGE2. In view of the low pO2 in the inner medulla, especially during antidiuresis, oxygen can potentially regulate prostaglandin productin in this tissue.  相似文献   

3.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

4.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

5.
The process of renal inflammation was examined using the partial renal vein constricted rabbit kidney (RVC) as a model. Forty eight hours of partial renal vein constriction in the rabbit was associated with an increase in prostaglandin (PG) and thromboxane (Tx) production. The perfused RVC kidney showed an enhanced time-dependent increase in PG and Tx production in response to bradykinin stimulation when compared with the unlatered contralateral (CLK) or normal kidney. At 6 hrs of perfusion bradykinin stimulation lateral (CLK) or normal kidney. At 6 hrs of perfusion bradykinin stimulation released 2950±350 ng PGE2, 61±15 ng TxB2 from the RVC, and 225±85 ng PGE2 and undetectable TxB2 from the CLK. Histological examination of the RVC cortex showed an increase in fibroblast-like cells, a modest increase in the interstitial space and an appearance of macrophages and lymphocytes not seen in the normal of CLK. Endotoxin has been reported to stimulate macrophages in culture to produce PGE2 and TxB2. Endotoxin (100 ng)_stimulation of the perfused RVC kidney caused an immediate, followed by a chronically increasing, release of PGs and Tx. Two hours after endotoxin injection 50 ml of effluent fromt the RVC contained 1450±107 ng PGE2 and 15.0±4.5 ng TxB2. Other models of renal inflammation (e.g., the hydronephrotic kidney, chronic glomerulonephritis) also show the histological appearance of macrophages. In addition, hydronephrotic kidneys undergo fibroblast proliferation and changes in arachidonic acid metabolism similar to what we observed in the RVC. This work suggests that the inflammatory process (mononuclear cell infiltration), fibroblast-like cell proliferation, and accompanying changes in arachidonate metabolism) is common among different forms of renal injury.  相似文献   

6.
In vitro utilization or production of citrate by the cortex, outer medulla or inner medulla of dog kidney was measured. Our data show: 1. An in vitro citrate synthesis or utilization capacity of the cortex greater than that of the red medulla. 2. An effect of pH on citrate synthesis or utilization capacity of the cortex, an effect not seen with medullary slices. 3. An absence of citrate synthesis or utilization by white medulla slices. It would seem that the citrate found in the white medulla and the papilla of the dog kidney in vivo was not produced in situ.  相似文献   

7.
THIS report describes the biosynthesis of the naturally occurring renal prostaglandins E2 (PGE2) and F (PGF)1,2 by homogenates and slices of rabbit renal medulla, from endogenous precursors. I have confirmed that rabbit renal cortex contains little prostaglandin and cannot synthesize them from endogenous lipids3. Hamberg has reported that arachidonic acid, which is converted to PGE2 and PGF by enzymes present in ram seminal vesicles4, can be efficiently converted to PGE2 and PGF by homogenates of rabbit renal medulla3. I have now confirmed that arachidonic acid, added to such medullary homogenates, can increase the quantities of prostaglandins synthesized. There was no evidence that the major prostaglandin biosynthesized, PGE2, was further metabolized to inactive products.  相似文献   

8.
9.
The hydronephrotic rabbit kidney exhibits elevated basal prostaglandin synthesis and supersensitivity to peptide stimulation of vascular prostaglandin and thromboxane formation. In this study the distribution of the prostaglandin-forming cyclooxygenase in hydronephrotic and contralateral rabbit kidneys following one and four day ureteral obstructions was compared using immunohistofluorescence. No alterations were detected in the distribution or intensity of cyclooxygenase-positive fluorescence in the renal vasculature in response to ureteral obstructions. However, two significant differences were noted between hydronephrotic and contralateral kidneys in the staining of renal tubules: (a) the intensity of fluorescent staining in cortical and medullary collecting tubules of the hydronephrotic kidney was increased and (b) cyclooxygenase antigenicity appeared in the thin limbs of Henle's loop in the hydronephrotic organ. Although alterations in prostaglandin formation by the renal vasculature have been documented previously, our results indicate that ureteral obstruction also causes increased prostaglandin synthesis by renal tubules.  相似文献   

10.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the absence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration. We used homozygous (jj) and phenotypically normal heterozygous (jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney were incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically. A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups. PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 +/- 6 ng/mg prot) than jJ rats (15 +/- 3) (p less than 0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 +/- 3) than jJ rats (9 +/- 2) (p less than 0.05). PGF2 alpha was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p less than 0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p less than 0.01); increased serum creatinine (p less than 0.05); and increase in outer medullary histopathologic lesions (p less than 0.005 compared to either sham-treated jj or aspirin-treated jJ). These results suggest that enhanced prostaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of prostaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

11.
The hydronephrotic rabbit kidney exhibits elevated basal prostaglandin synthesis and supersensitivity to peptide stimulation of vascular prostaglandin and thromboxane formation. In this study the distribution of the prostaglandin-forming cyclooxygenase in hydronephrotic and contralateral rabbit kidneys following one and four day ureteral obstructions was compared using immunohistofluorescence. No alterasions were detected in the distribution or intensity of cyclooxygenase-positive fluorescence in the renal vasculature in response to ureteral obstructions. However, two significant differences were noted between hydronephrotic and contralateral kidneys in the staining of renal tubules: (a) the intensity of fluorescent staining in cortical and medullary collecting tubules of the hydronephrotic kidney was increased and (b) cyclooxygenase antigenicity appeared in the thin limbs of Henle's loop in the hydronephrotic organ. Although alterations in prostaglandin formation by the renal vasculature have been documented previously, our results indicate that ureteral obstruction also causes increased prostaglandin synthesis by renal tubules.  相似文献   

12.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the abscence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration.We used homozygous (jj) and phenotypically normal heterozygous )jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney wre incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically.A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups, PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 ± 6 mg/mg prot) than jJ rats (15 ± 3) (p<0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 ± 3) than jJ rats (9 ± 2) (p<0.05). PGE2α was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p<0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p<0.01); increased serum creatinine (p<0.05); and increase in outer medullary histopathologic lesions (p<0.005 compared to either sham-treated jj or aspirin-treated jJ).These results suggest that enhanced protaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of protaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

13.
Since the mammalian renal cortex avidly metabolizes prostaglandin E2 (PGE2), we examined the importance of renal metabolism of PGE2 in determining its renal vascular activity in the dog. We used 13, 14 dihydro PGE2 (DHPGE2) as a model compound to study this because DHPGE2 retains similar activity to the parent prostaglandin, PGE2, but is a poorer substrate than PGE2 for both the metabolism and the cellular uptake of the prostaglandins. Using dog renal cortical slices, we found that under similar experimental conditions, PGE2 was metabolized several-fold faster than DHPGE2. Both prostaglandins were metabolized to the 15 keto 13, 14 dihydro PGE2, which was positively identified using GC-MS. In vivo, we infused increasing concentrations of DHPGE2 into the renal artery of dogs and measured renal hemodynamic changes using radioactive microspheres. DHPGE2 was a potent renal vasodilator beginning at an infusion rate of 10−9g/kg/min. When compared to PGE2, DHPGE2 was about 10 times more potent in affecting renal vasodilation. The intrarenal redistribution of blood flow towards the inner cortex seen with DHPGE2 was identical to that seen with PGE2. We conclude that renal catabolism of PGE2 is very important in limiting the in vivo biological activity of PGE2, but regional differences in metabolism of PGE2 within the cortex are an unlikely determinant of the pattern of redistribution of renal blood flow.  相似文献   

14.
Human cortical hydronephrotic microsomes converted [14C] arachidonic acid to [14C] thromboxane B2 as the major metabolic product. Using [14C] PGH2 as substrate, similar enzymatic conversions were noted with HHT>TXB26KPGF1αPGE2PGF2α as the major products. Inhibition of thromboxane synthetase with imidazole 5 mM reduced thromboxane B2 production by 60% and the major product then was 6 keto PGF. After addition of imidazole, the metabolic profile showed 6KPGF1αPGE2HHT>PGF2α. Control experiments were carried out using normal cortical tissue obtained from kidneys removed surgically for carcinoma of kidney and rejected for transplantation secondary to fracture as a consequence of blunt trauma. These control kidneys, while they demonstrated an ability to generate thromboxane B2in vitro, had much less activity than hydronephrotic kidneys and with PGH2 as substrate PGE2TxB2. In addition, inhibition with imidazole produced mainly PGE2. Thus, like the rabbit and rat, there is enhanced thromboxane and prostacyclin synthesis in human ureteral obstruction and are, therefore, potential vasoactive compounds which may in part be responsible for the hemodynamic alterations occurring in human obstructive uropathy.  相似文献   

15.
The effects of prostaglandin (PG) E1, E2, A1, F1alpha, F2alpha or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AMP systems were examined. While high concentrations (8X10-4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10-7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10-4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively similar results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

16.
何斌  葛庆华 《生理学报》1991,43(4):405-409
For evaluating the role of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the metabolism of salt and water, the metabolic products of PGI2 and TXA2 (6-keto-PGF1 alpha and TXB2 respectively) were measured by radioimmunoassay in salt-loaded rabbits. 36 normal rabbits were randomly divided into 3 groups: 1. normal control group; 2. 3h salt-loading group (3 h group); 3. 24 h salt-loading group (24 h group). Both the 3 h and 24 h groups were given 0.9% NaCl solution by subcutaneous injection to the hind legs. The kidneys were dissected into 4 slices: outer cortex, inner cortex, outer medulla and inner medulla. The plasma 6-keto-PGF1 alpha in the 3 h group was increased from the control value of 46.61 +/- 19.04 pg/ml to 111.63 +/- 58.36 pg/ml (P less than 0.01). All of the dissected renal slices also showed significant increase of 6-keto-PGF1 alpha synthesis in both the 3 h and the 24 h groups (P less than 0.001 vs. normal). The urinary sodium concentrations have a good correlation with 6-keto-PGF1 alpha in plasma or in kidney tissues. Plasma TXB2 in normal group was 499.27 +/- 197.86 pg/ml, but no significant change was found in the 3h group. However, in the 24 h group it decreased significantly to 218.76 +/- 114.54 pg/ml (P less than 0.05 vs. normal group). Although the TXB2 increment was significant only in inner medulla, all other dissected renal slices showed some increase of TXB2 synthesis too. It is concluded that salt-loading can cause increase of PGI1 and TXA2 synthesis in normal renal tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The ipsilateral kidney was removed from a rabbit 48h after unilateral partial renal-vein-constriction and was perfused with Krebs–Henseleit media at 37°C. Hourly administration of a fixed dose of bradykinin to the renal-vein-constricted kidney demonstrated a marked time-dependent increase in the release of bioassayable prostaglandin E2 and thromboxane A2 into the venous effluent as compared with the response of the contralateral control kidney. The renal-vein-constricted kidney produced up to 60 times more prostaglandin E2 in response to bradykinin after 6h of perfusion as compared with the contralateral kidney; thromboxane A2 was not demonstratable in the contralateral kidney. Inhibition of protein synthesis de novo in the perfused renal-vein-constricted kidney with cycloheximide lessened the hormone-stimulated increase in prostaglandin E2 by 94% and in thromboxane A2 by 90% at 6h of perfusion. Covalent acetylation of the renal cyclo-oxygenase by prior oral administration of aspirin to the rabbit inhibited initial bradykinin-stimulated prostaglandin E2 biosynthesis 71% at 1h of perfusion. However, there was total recovery from aspirin in the renal-vein-constricted kidney by 2h of perfusion after bradykinin stimulation. Total cyclo-oxygenase activity as measured by [14C]arachidonate metabolism to labelled prostaglandins by renal cortical and renal medullary microsomal fractions prepared from 6h-perfused kidneys demonstrated that renal-vein-constricted kidney-cortical cyclo-oxygenase activity was significantly greater than the contralateral-kidney-cortical conversion, whereas medullary arachidonate metabolism was comparable in both the renal-vein-constricted kidney and contralateral kidney. These data suggest that perfusion of a renal-vein-constricted kidney initiates a time-dependent induction of synthesis of prostaglandin-producing enzymes, which appear to be primarily localized in the renal cortex. The presence of the synthetic capacity to generate very potent vasodilator and vasoconstrictor prostaglandins in the renal cortex suggests that these substances could mediate or modulate changes in renal vascular resistance in pathological states.  相似文献   

18.
Polymorphonuclear neutrophil granulocytes (PMNs) seem to participate in the pathogenesis of renal ischemic reperfusion injury. The kidneys from male Sprague Dawley rats were immersion-fixed after 45 min of renal artery clamping followed by reperfusion for 0, 5, 20, and 120 min, respectively. The tissue distribution of PMNs in the kidneys was studied histochemically using naphthol AS-D chloroacetate esterase as a specific marker for these cells. Neutrophil counts per unit sectional area were obtained for renal cortex, outer and inner medulla. In the cortex separate intraglomerular and peritubular counts, and in the outer medulla separate outer and inner stripe counts were made. After 120 min of reperfusion the total renal PMN counts were 488 ±62 (n = 4) compared with 54 ±4 (n = 4) per cm2 in nonischemic controls. Within 120 min of reperfusion PMN counts increased by a factor of 8 in the cortex, of 12 in the outer medulla and of 14 in the inner medulla, compared with controls. The ratio of intraglomerular against peritubular PMN counts was approximately 2 in controls, but 0.5 after a 120-min reperfusion interval. The outer stripe of the outer medulla contained only a small number of PMNs whereas PMN counts of 923 ±197 (n = 4) per cm2 were found in the inner stripe after 120 min reperfusion. Interestingly, there was a marked increase in PMNs in the inner stripe during the first 5 min of reperfusion but no extravasation of PMNs was observed. Taken together, these data provide the first evidence that PMNs accumulate particularly within peritubular capillaries in the cortex and within the inner stripe of the outer medulla. This distribution pattern is consistent with the hypothesis that PMN-augmented cell injury occurs in the early phase of postischemic acute renal failure. In addition the steady increase in PMNs during reperfusion may further contribute to impaired renal function.  相似文献   

19.
H Vidrio 《Life sciences》1978,22(19):1763-1769
In order to determine whether cardiovascular reactivity to exogenous prostaglandins is altered in hypertension, the hypotensive effects of increasing intravenous doses of PGA1 and PGE1 were assessed in conscious normotensive rabbits and in rabbits made hypertensive by wrapping both kidneys with cellophane. Similar experiments were carried out with nitroglycerin. Depressor responses to the prostaglandins, but not to nitroglycerin, were greater in hypertensive than in normotensive animals. The possibility of this enhanced responsiveness being related to the prostaglandin deficiency believed to exist in hypertension was explored in normotensive rabbits treated acutely with indomethacin. The prostaglandin synthesis inhibitor did not affect blood pressure responses to PGA1 or PGE1. Although these experiments do not rule out the possible influence of more prolonged prostaglandin deficiency on cardiovascular reactivity, a more apparent adrenergic inhibitory component of the hypotensive effect of prostaglandins in hypertensive animals was considered a likely alternative explanation for the phenomena observed.  相似文献   

20.
A method for the evaluation of PGF and PGE2 biosynthesis in rat cerebral cortex is described. Tissue slices were incubated without any added precursor for different lengths of time. The analytical procedure involves prostaglandin extraction, purification and quantitative determination by mass fragmentography. Significant amounts of both prostaglandins were synthesized. The biosynthesis reached a plateau after 30 minutes and the ratio of PGF to PGE2 was approximately 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号