首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution of laminin was investigated by immunocytochemistry in the rat anterior pituitary in vivo and in primary culture. It was localized by immunofluorescence and by immunoperoxidase in the basement membranes of the pituitary in vivo. In addition it was also found inside glandular cells both in vivo and in culture. The number of immunoreactive cells greatly varied depending on the technical approach used. It was always higher in primary cultures than in vivo. At the electron microscope level, a staining was observed on secretory granules, on rough endoplasmic reticulum cisternae as well as on the membrane of some Golgi saccules and vesicles. Such a localization, at the level of subcellular sites involved in the secretory process, suggests that these cells are able to synthesize and to export in vivo as well as in vitro this component of their basement membranes. This work was supported by grants from CNRS (Grant E.R. 89 and ATP “Pharmacologie des Récepteurs des Neuromediateurs”). Part of this work was performed at the EMBL (Heidelberg) during a short stay of C. Tougard (supported by an EMBO short term fellowship). EDITOR'S STATEMENT This paper documents the interesting observation that glandular cells from anterior pituitary contain laminin in their basement membranes and also apparently synthesize and secrete this extracellular matrix component. Gordon H. Sato  相似文献   

2.
The paired female accessory glands of Phlebotomus perniciosus (Diptera : Psychodidae) were investigated by light microscopy, and by scanning and transmission electron microscopy. These glands undergo morphological and functional changes during oocyte development. After the blood meal, the monostratified glandular epithelium differentiates and starts to secrete. Well-developed rough endoplasmic reticulum, Golgi complexes, and membrane-bounded exocytic vesicles suggest that these secretory cells are involved in protein synthesis. As the secretory cells differentiate, the glandular lumen increases in size and fills with secretory material, consisting of globular granules of different sizes in an amorphous electron-dense matrix. The granules have an electron-translucent core and an electron-dense cortex. The morphological characteristics of the glandular epithelium and the functional role of the glands are discussed in relation to their possible contribution to the reproductive process.  相似文献   

3.
Tumor-derived GH3 rat pituitary cell lines are widely utilized to study mechanisms of prolactin secretion and responsiveness to secretagogues. These cells served here as a model with which to study relationships between shape and function. When GH3 cells were routinely grown in serum-supplemented medium, they exhibited the polygonal phenotype of epithelial cells, with scarce secretory granules. In contrast, when seeded in a serum-free medium, they attached loosely and contained more secretory granules. In both cases, they released prolactin in a nonpolarized manner. We show in the present work that laminin extracted from Englebreth-Holm-Swarm (EHS) tumors was a potent attachment and spreading factor for GH3/B6 cells seeded in serum-free medium. Moreover, it induced the formation of neurite-like processes, which were increased in number and length by chronic treatment with a specific secretagogue, thyroliberin (TRH). These changes in cell shape were correlated with a potentiation of prolactin secretion, both basal and TRH-stimulated. Furthermore, using immunocytochemistry and electron microscopy, we revealed--at the dilated tip of processes--an accumulation not only of prolactin, but also of synaptophysin, a vesicle membrane marker, and of several organelles, such as secretory granules, smooth vesicles, dense bodies and mitochondria. The cytoplasmic processes contained long parallel bundles of microtubules and showed a strong immunoreactivity for beta 2-tubulin. In addition, we found immunocyto-chemical evidence for the presence of 200-k Da neurofilament protein in GH3/B6 cell processes as well as in neurites of cultured hypothalamic neurons. We conclude that, in GH3/B6 cells, laminin induced the differentiation of neurite-like processes, which were the site of polarized organelle transport and exhibited some neuronal markers.  相似文献   

4.
The pineal organ of the migratory antarctic penguin, Pygoscelis papua, has a lobular structure. Clusters formed by different types of parenchymal cells are separated by connective tissue septa containing blood vessels. The predominant cell type displays a well-developed Golgi complex, free ribosomes, clear and granular vesicles (secretory granules), and lysosomes. Other cell types found in the gland are supporting and ependymal-like cells. The former contain dense bodies and filament bundles, the latter possess abundant cilia and clusters of ribosomes. Typical photoreceptor elements are lacking. Blood vessels are located within a perivascular space bordered by basal laminae. This perivascular space extends between the basal protrusions of the parenchymal cells. The presence of pinocytotic vesicles, secretory granules and cytoplasmic processes in the vicinity of these spaces suggests active sites of transport and exchange of substances. Intercellular conaliculi-like spaces are surrounded by parenchymal cells rich in microvilli. These cancliculi are continuous with the cavities (invaginations) of secretory and other parenchymal cells.  相似文献   

5.
En route through the secretory pathway of neuroendocrine cells, prohormones pass a series of membrane-bounded compartments. During this transport, the prohormones are sorted to secretory granules and proteolytically cleaved to bioactive peptides. Recently, progress has been made in a number of aspects concerning secretory protein transport and sorting, particularly with respect to transport events in the early regions of the secretory pathway. In this review we will deal with some of these aspects, including: i) selective exit from the endoplasmic reticulum via COPII-coated vesicles and the potential role of p24 putative cargo receptors in this process, ii) cisternal maturation as an alternative model for protein transport through the Golgi complex, and iii) the mechanisms that may be involved in the sorting of regulated secretory proteins to secretory granules. Although much remains to be learned, interesting new insights into the functioning of the secretory pathway have been obtained.  相似文献   

6.
The exocrine protein rat anionic trypsinogen has been expressed and is secreted from the murine anterior pituitary tumor cell line AtT-20. We examined which secretory pathway trypsinogen takes to the surface of this endocrine-derived cell line. The "constitutive" pathway externalizes proteins rapidly and in the absence of an external stimulus. In the alternate, "regulated" pathway, proteins are stored in secretory granules until the cells are stimulated to secrete with 8-Br- cAMP. On the basis of indirect immunofluorescence localization, stimulation of release, and subcellular fractionation, we find that trypsinogen is targeted into the regulated secretory pathway in AtT-20 cells. In contrast, laminin, an endogenous secretory glycoprotein, is shown to be secreted constitutively. Thus it appears that the transport apparatus for the regulated secretory pathway in endocrine cells can recognize not only endocrine prohormones, but also the exocrine protein trypsinogen, which suggests that a similar sorting mechanism is used by endocrine and exocrine cells.  相似文献   

7.
Summary The technique of ultrastructural immunocytochemistry involving the unlabeled antibody and the soluble peroxidase-antiperoxidase complex was used to identify and describe the prolactin (P) cells, somatotropic (STH) cells and luteinizing hormone (LH) cells in the bovine anterior pituitary gland. This method was used to localize the three hormones at the electron microscopic level. Staining of varying intensity was found on the secretory granules and on the small granules and vesicles within the Golgi complex. No stain was found in nuclei, on mitochondria or in the endoplasmic reticulum.  相似文献   

8.
The GH3 rat pituitary cell line which secretes prolactin (PRL) is characterized by the paucity and small size of secretory granules. We looked for the presence, in these cells and in normal PRL cells, of two acidic tyrosine-sulfated proteins which are widely distributed in dense-core secretory granules of endocrine and neuronal cells, secretogranins I and II, using immunofluorescence and electron microscope immunoperoxidase techniques. Both secretogranins were detected in secretory granules of GH3 cells and of normal cells. Moreover, with our pre-embedding approach, secretogranins were localized within some RER cisternae and within all sacules of the Golgi stacks in both PRL cell models. A few small vesicles, large dilated vacuolar or multivesicular structures, and some lysosome-like structures were also immunoreactive. Double localization of secretogranins and PRL performed on GH3 cells by immunofluorescence indicated that all cells contained secretogranins I and II, whereas only 50-70% of the cells contained PRL. Moreover, in the case of hormone treatment known to increase the number of secretory granules, most if not all mature secretory granules were immunoreactive for secretogranins, whereas in certain cells some of the granules were apparently not immunoreactive for PRL. These immunocytochemical observations show that GH3 cells, which under normal conditions form only a small number of secretory granules, produce secretogranins and package them into these granules.  相似文献   

9.
Distribution of microtubules in prolactin cells of lactating rats   总被引:1,自引:0,他引:1  
The intracellular distribution of microtubules was studied using serial sections of prolactin cells in anterior pituitary glands from lactating rats. Numerous microtubules were present in these cells following fixation with glutaraldehyde and osmium tetroxide. The greatest number of microtubules were present in the Golgi complex, situated around the perimeter and in association with the cisternae, vesicles and developing secretory granules. Microtubules were found in channels between groups of parallel cisternae of rough surfaced endoplasmic reticulum and in close proximity to small vesicles. They were also located adjacent to mitochondria, the plasmalemma, the nuclear envelope, and among mature secretory granules. Due to their orientation within the cell, it is suggested that the microtubules may act to direct the movement of organelles from one region of the cell to another and to give internal support to the cell.  相似文献   

10.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

11.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

12.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

13.
NESP55 (neuroendocrine secretory protein of M(r) 55,000) is a paternally imprinted proteoglycan, expressed specifically in endocrine cells and the nervous system. We investigated the subcellular localization and secretion of NESP55 in AtT-20 cells. NESP55 accumulated in the medium linearly over 24 h exceeding its intracellular content 3.7-fold by that time. Incubation of cells at 16 degrees C, to block protein export, inhibited basal secretion by 79%. Stimulation of AtT-20 cells with 8-Br-cAMP increased secretion of NESP55 by only 45%. The NESP55 secretory vesicles sedimented at a density of 1.2-1.4 M, which is slightly lighter than that of the large dense core vesicles. Immunofluorescence studies revealed immunoreactivity in the Golgi apparatus and a punctuate staining of processes or neurites. Our data demonstrate that NESP55 is mainly sorted to and released from a population of constitutive secretory vesicles, which are transported out of the perikarya into processes or axons. In addition, some NESP55 is also routed to the regulated pathway. The signal peptide of NESP55, as determined with peptide antisera, is 46 amino acids long and represents the best conserved region of this molecule suggesting that the signal peptide may have a function of its own. The subcellular localization and export of NESP55 from cells are reminiscent of neuronal proteoglycans forming the extracellular matrix, which are implicated in the development and maintenance of neuronal circuits and mechanisms of axonal guidance.  相似文献   

14.
Prohormones are directed from the trans-Golgi network to secretory granules of the regulated secretory pathway. It has further been proposed that prohormone conversion by endoproteolysis may be necessary for subsequent retention of peptides in granules and to prevent their release by the so-called "constitutive-like" pathway. To address this directly, mutant human proinsulin (Arg/Gly(32):Lys/Thr(64)), which cannot be cleaved by conversion endoproteases, was expressed in primary rat islet cells by recombinant adenovirus. The handling of the mutant proinsulin was compared with that of wild-type human proinsulin. Infected islet cells were pulse labeled and both basal and stimulated secretion of radiolabeled products followed during a chase. Labeled products were quantified by high-performance liquid chromatography. As expected, the mutant proinsulin was not converted at any time. Basal (constitutive and constitutive-like) secretion was higher for the mutant proinsulin than for wild-type proinsulin/insulin, but amounted to <1% even during a prolonged (6-h) period of basal chase. There was no difference in stimulated (regulated) secretion of mutant and wild-type proinsulin/insulin at any time. Thus, in primary islet cells, unprocessed (mutant) proinsulin is sorted to the regulated pathway and then retained in secretory granules as efficiently as fully processed insulin.  相似文献   

15.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

16.
The structure of the glandular tissue located beneath the eye sulcus in Andrena variabilis Smith was studied by means of light and electron microscopy. The glandular tissue was found to be constituted of single-layered, high cylindrical epithelial cells. Electron microscopy revealed strong foldings of the cell membrane on the basal pole of the gland cells. Next to the basal lamina, nerve fibres were found with great frequency. The central, perinuclear zone of the gland cells was rich in cell organelles. The lamellae of the rough-surfaced endoplasmic reticulum (rer) were mostly observed near the nuclear membrane. The vesicles and tubules of the smooth-surface endoplasmic reticulum (ser) were found to be congregated in contiguous compact regions. A well-developed and complicated canalicular system was enclosed between the rer and ser compartments, presumably serving as a passage for the secretory products. Membrane-bound electron-dense granules (secretory granules) were also a characteristic finding in the ser. In a small proportion of the gland cells, strong vacuolization indicated the degradation processes. From the light and electron microscopic characteristics of the gland cells, the existence of pheromone-producing secretory activity of exocrine type in the cephalic gland is presumed.  相似文献   

17.
In the anterior pituitary glands of neonatally thyroidectomized female rats sacrificed at 30 days of age, the prolactin granules were small and spherical in shape. The administration of thyroxine to neonatally thyroidectomized rats produced an obvious increase in the number and size of secretory granules in prolactin cells; comparatively large, pleomorphic secretory granules were frequently observed in these cells. These enlarged and pleomorphic granules closely resembled those observed in the prolactin cells of sham-operated control rats. These results may indicate that thyroxine stimulates the basic metabolism or cellular function of prolactin cells of neonatally thyroidectomized rats and leads to the formation of prolactin granules that are similar to those of sham-operated control rats.  相似文献   

18.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

19.
Summary The immunocytochemical peroxidase-antiperoxidase technique was used to identify prolactin- and growth hormone-producing cells in the porcine pituitary at the ultrastructural level. The growth hormone-producing cells contain round secretory granules (300 nm to 500 nm in diameter). The prolactin-producing cells can be identified by their distinct round and ovoid secretory granules which vary in size. Most of these cells contain large granules (450 nm to 750 nm in diameter), but some prolactin-producing cells display smaller secretory granules (250 nm to 500 nm). The two hormones were localized exclusively in the secretory granules. Staining for prolactin was observed in round and ovoid granules, as well as in small and polymorphic granules within the Golgi complex. This study confirmed (i) that the two hormones are located in different cells, and (ii) that under normal physiological conditions no one cell can synthesize and store both hormones simultaneously.  相似文献   

20.
Immunodetection of renin-angiotensin system (RAS) components indicates that there is a local RAS in anterior pituitary cells, particularly in lactotropes. We have attempted to determine if RAS molecules are secreted by lactotropes and the secretory pathways and intracellular sites of maturation. We investigated the secretory activity of individual lactotropes, using the reverse hemolytic plaque assay (RHPA), with GH3B6 tumor cells and normal male rat pituitary cells. We also determined the subcellular distributions of RAS components in these cells. Both tumor and normal cells secreted angiotensinogen, prorenin, renin, angiotensin I, angiotensin-converting enzyme, and angiotensin II, although at different levels. The percentage of secretory cells was generally higher in tumor lactotropes than in normal cells. The subcellular distribution of RAS components obtained by immunoperoxidase was very similar in both cell types, although the intensities of immunoreactivity differed. Cleaved and uncleaved components were found in rough endoplasmic reticulum (RER), Golgi saccules, and secretory granules, all compartments of the secretory pathway. The cleaved components in the RER suggest the existence of early maturation, whereas the presence of uncleaved products in the secretory granules of normal lactotropes might indicate late maturation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号