首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Spatial and temporal environmental variation in terrestrial Antarctic ecosystems are known to impact species strongly at a local scale, but the ways in which organisms respond (e.g. physiologically, behaviourally) to such variation are poorly understood. Further, very few studies have attempted to assess inter-annual variability of such responses.Building on previous work demonstrating intra-seasonal variation in standard metabolic rate in the springtail Gomphiocephalushodgsoni, we investigated variation in metabolic activity of G. hodgsoni across two austral summer periods at Cape Bird, Ross Island. We also examined the influence of spatial variation by comparing metabolic rates of G. hodgsoni at Cape Bird with those from two other isolated continental locations within Victoria Land (Garwood and Taylor Valleys).We found significant differences between metabolic rates across the 2 years of measurement at Cape Bird. In addition, standard metabolic rates of G. hodgsoni obtained from Garwood and Taylor Valleys were significantly higher than those at Cape Bird where habitats are comparable, but environmental characteristics differ (e.g. microclimatic temperatures are higher).We discuss potential underlying causes of these metabolic rate variation patterns, including those related to differences among individuals (e.g. physiological and genetic differences), locations (e.g. habitat quality and microclimatic regime differences) and populations (e.g. acclimation differences among G. hodgsoni populations in the form of metabolic cold adaptation (MCA)).  相似文献   

2.
Gomphiocephalus hodgsoni (Collembola) is the most common and widely distributed arthropod in the Dry Valleys of southern Victoria Land, and is genetically diverse with over 70 mitochondrial cytochrome c oxidase subunit I (COI) haplotypes. There is also considerable physiological variation among G. hodgsoni individuals in their cold tolerance and metabolic activity. Here, we assessed genetic haplotypes of G. hodgsoni relative to the environmental conditions during which individuals were active. We sequenced the COI region of 151 individuals collected in pitfall traps from three sites within Taylor Valley and found 19 unique haplotypes that separated into two distinct lineages (1.6 % divergence), with one lineage comprising 80 % of the sequenced population. During two-hourly sampling, air temperature was the strongest predictor of activity between the two lineages (R 2 = 0.56), and when combined with subsurface soil temperature, relative humidity and photosynthetically active radiation, explanatory power increased to R 2 = 0.71. With steadily increasing air temperatures predicted for much of Antarctica, it is likely that some haplotypes will have a selective advantage and potentially result in decreased genetic variability within populations. We suggest that temporal monitoring of the relative proportions of COI haplotypes or other appropriate genetic markers may provide a subtle measure of biological responses to environmental changes within Antarctic terrestrial ecosystems.  相似文献   

3.
The springtail Gomphiocephalus hodgsoni (Arthropoda: Collembola) has been the focus of extensive ecophysiological and molecular genetic work and is now arguably the most well-studied of the continental Antarctic springtails. Here, we further the ecophysiological catalogue of this species. First, we provide experimental data on G. hodgsoni from one summer season at Cape Bird (Ross Sea Region) examining dispersal ability and desiccation tolerance. Next, we expand an existing metabolic rate dataset that encompasses individual metabolic rate measurements across both temporal and spatial scales in southern Victoria Land, adding an additional season of metabolic rate measurements taken at a cooler, drier continental location (Garwood Valley). Our data show that some G. hodgsoni individuals can survive at least ten days of suspension on the surface of both fresh and sea water. This, coupled with the presence of G. hodgsoni specimens in air and pitfall traps suggests that dispersal over local scales (i.e. metres) is possible for this species. Our metabolic data show that different populations within the same Antarctic region have different average metabolic rates at both temporal and spatial scales, indicating that distinct populations may respond differently to environmental variables. We suggest that G. hodgsoni maintains a flexible life history strategy that allows its ecophysiological response(s) to be dependent on local environmental conditions. Accordingly, there may be no ‘typical’ response to environmental changes—a factor that should be considered in both future ecophysiological work and conservation approaches.  相似文献   

4.
It is widely acknowledged that in the terrestrial Antarctic, interspecific interactions are typically unimportant in determining species distributions and community structure. Therefore, correlative models should prove useful for predicting current and future spatial variation in species abundance patterns. However, this idea has not been formally tested, and the utility of such models, which have shown value for understanding the distribution of diversity elsewhere, for investigating biodiversity patterns in Antarctica remains unclear. Here we make a start at such tests by using generalized linear and simultaneous autoregressive models to demonstrate that simple environmental variables and information about the spatial structure of the environment can explain more than 90% of the variation in the abundance of Maudheimia wilsoni (Oribatida; Maudheimiidae), a representative of one of the most significant groups of Antarctic terrestrial arthropods, the mites. We show that a single environmental variable, maximum soil moisture content, can account for as much as 80% of the variance in the abundance of the mite, and that linear models with only a few environmental and spatial terms can be used to forecast the species abundance at the landscape scale. Given ongoing calls for better understanding of the distribution of Antarctic diversity and its likely future change, this initial test indicates that such modelling procedures, and more sophisticated versions thereof, hold much promise for the region and should be tested for other taxa with different life forms and habitat requirements.  相似文献   

5.
The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and on the Antarctic continent. The terrestrial green alga Prasiola crispa (Lightf.) Kütz. is also distributed in Antarctica. These two species need to acclimate to the severe Antarctic climate including low ambient temperature and desiccation under strong light conditions. To clarify this acclimation process, the physiological characteristics of the photosynthetic systems of these two Antarctic terrestrial organisms were assessed. The relative rate of photosynthetic electron flow in N. commune collected in Japan and in Antarctica reached maxima at 900 and 1,100 μmol photons · m?2 · s?1, respectively. The difference seemed to reflect the presence of high amounts of UV‐absorbing substances within the Antarctic cyanobacterium. On the other hand, the optimal temperatures for photosynthesis at the two locations were 30°C–35°C and 20°C–25°C, respectively. This finding suggested a decreased photosynthetic thermotolerance in the Antarctic strain. P. crispa exhibited desiccation tolerance and dehydration‐induced quenching of PSII fluorescence. Re‐reduction of the photooxidized PSI reaction center, P700, was also inhibited at fully dry states. Photosynthetic electron flow in P. crispa reached a maximum at 20°C–25°C and at a light intensity of 700 μmol photons ? m?2 ? s?1. Interestingly, the osmolarity of P. crispa cells suggested that photosynthesis is performed using water absorbed in a liquid form rather than water absorbed from the air. Overall, these data suggest that these two species have acclimated to optimally photosynthesize under conditions of the highest light intensity and the highest temperature for their habitat in Antarctica.  相似文献   

6.
Epithelial cells in the body wall of adult and developmental stages of marine invertebrates absorb dissolved organic material directly from seawater. Despite over a century of study, little is known about the molecular biological mechanisms responsible for this transport process. Previous studies on embryonic and larval Antarctic echinoderms show that amino acid uptake could provide an important supplement of metabolic substrates. In the present study, partial cDNA sequences of 11 putative amino acid transporter genes were isolated from six species of Antarctic echinoderms including the Antarctic sea stars Acodontaster hodgsoni, Diplasterias brucei, Odontaster meridionalis, Odontaster validus, and Perknaster fuscus, and the Antarctic sea urchin Sterechinus neumayeri. Conserved domains of cDNA-deduced amino acid sequences characterized these genes as being members of a family of amino acid transporters (solute carrier family 6). Expression of these genes was detected throughout embryonic and larval development of two species that have contrasting developmental modes (A. hodgsoni: lecithotrophic; O. meridionalis: planktotrophic). In all six species studied, the expression of amino acid transporter genes was detected in tube feet and digestive organs of adult animals, demonstrating that members of a single amino acid transporter gene family are expressed during the entire life history of a marine invertebrate. The identification of these genes is an important step toward developing a mechanistic understanding of amino acid transport capacities in Antarctic marine invertebrates.  相似文献   

7.
8.
Egg lipid and protein content of different females of Antarctic echinoderms in McMurdo Sound, Antarctica, were measured to assess variation among females and developmental success. Egg triacylglycerol content of the Antarctic sea urchin Sterechinus neumayeri, when less than 70 ng, correlated with embryos that failed to develop past the 4-day-old blastula stage. In contrast asteroids (Odontaster meridionalis, O. validus, Acodontaster hodgsoni) all produced eggs that developed normally, even with variable egg lipid content. This difference might be related to dietary sources for more herbivorous sea urchins compared to more omnivorous and predatory asteroids. Low egg lipid content, with resulting poor embryonic survivorship, suggests that herbivorous sea urchins may be under unusual levels of nutritional stress in McMurdo Sound during the time frame studied (2004–2005). This nutritional stress might be related to the presence of large icebergs, known to have reduced primary production in the Ross Sea area.  相似文献   

9.
Cyanobacterial species composition of fresh water and terrestrial ecosystems and chemical environment of water in Schirmacher Oasis in Continental Antarctica was investigated. Over 35 species of cyanobacteria were recorded. Diazotrophic species both heterocystous and unicellular contributed more than half to the count except in lake ecosystem. The species composition varied among the fresh water as well as terrestrial ecosystems. The physico-chemical analyses of water revealed its poor nurient content which might have supported the growth of diazotrophic cyanobacteria in an Antarctic environment. Among the cyanobacteria Oscillatoria, Phormidium and Nostoc commune were the dominant flora in most of the habitats. The physiological characteristics of isolated cyanobacteria strains indicated that N2-fixation, nitrate uptake, nitrate-reduction, ammonium-uptake, GS-transferase activity and photosynthesis was unaffected at low temperature (5 degrees C) which indicated low temperature adaptation for Antarctic cyanobacteria. This phenomenon was not evident in different strains of tropical origin. The temperature optima for N2-fixation for the different Antarctic cyanobacterial strains was in the range of 15-25 degrees C, nearly 10 degrees C lower than their respective reference strains of tropical origin. Similar results were obtained for cyanobacteria-moss association. The low endergonic activation energy exhibited by the above metabolic activities supported the view that cyanobacteria were adapted to Antarctic ecosystem.  相似文献   

10.
Among the few existing works on seasonal variation in metabolic rate of polar species, most have been conducted during summer due to logistic constraints and have been focused on species that cease feeding during winter. In this work, we present the first extensive data set on the seasonal variation in metabolic rate of G. antarctica, an abundant amphipod that feeds throughout the year, and its relationship with body size, potential food availability and temperature. We measured the resting metabolic rate (RMR) of groups of individuals during 6 months from late summer through winter at 4 experimental temperatures and for a wide range of body size. RMR had a negative allometric scaling with body size and showed a tendency to increase with temperature as expected. However, temperature and body size effects on RMR showed a significant temporal variation, and an increase in temperature decreased scaling exponents. RMR at the mean seawater temperature throughout the study showed a strong seasonal variation following food availability: RMR decreased from the end of summer through winter, coinciding with a reduction in microphytobenthos stock, but recovered summer values in August, when an epontic algae boom occurred. The seasonal factorial aerobic scope (×2.37) is lower than benthic Antarctic invertebrates that cease feeding during winter, in agreement with what is expected based on theoretical grounds. Results suggest that seasonal variation of RMR would allow G. antarctica to achieve a high efficiency in energy utilization, while maintaining the ability to exploit sudden changes in food supply.  相似文献   

11.
Growth of Antarctic benthic organisms is very slow due to temperature and food availability, and subtle differences in growth rate may be difficult to detect. Nucleic acid ratios (RNA/DNA, RNA/protein or total RNA concentration) are measures of protein synthesis potential and may be used to assess short-term growth rate in a range of marine organisms. We quantified nucleic acid ratios in the scallop Adamussium colbecki and the clam Laternula elliptica at five locations in the Ross Sea, Antarctica. We were able to detect species-specific, habitat-specific, and seasonal differences in nucleic acid ratios and related these to associated differences in primary productivity. By using nucleic acid ratios, future studies could relatively easily obtain a measure of growth rate from a multitude of locations with contrasting habitat characteristics, food availability and temperature regimes around the Antarctic continent. This would yield a unique understanding of spatial and temporal patterns in bivalve growth in this extreme environment.  相似文献   

12.
Antarctica is the continent least affected by invasive species, but climate change and increasing human activity are increasing this threat. Antarctic terrestrial ecosystems generally have low biodiversity with simple community structures and little competition for resources. Consequently, species with pre-adaptations or capabilities that allow them to tolerate polar conditions may have disproportionately large ecosystem impacts when introduced to Antarctica compared with other regions of the Earth. Here we investigate the invasion risk associated with the flightless chironomid midge, Eretmoptera murphyi, which was accidentally introduced from South Georgia (54°S) to Signy Island, South Orkney Islands (61°S), probably during plant transplantation experiments in the 1960s. Larval size class distribution analysis indicated that E. murphyi has a 2 year life cycle on Signy Island, supporting previous suggestions. Estimates of litter turnover show that recent large increases in E. murphyi population density and extent are likely to increase nutrient cycling rates on Signy Island substantially. Existing physiological adaptations may allow E. murphyi to colonise higher latitude locations. Growth rate and microhabitat climatic modelling show that temperature constraints on larval development on Anchorage Island (68°S) are theoretically similar to those on Signy Island even though it is ~750 km further south. Establishment of this non-native midge at climatically similar intervening locations along the western Antarctic Peninsula is therefore plausible. Currently, lack of effective natural dispersal mechanisms is probably limiting the spread of the midge. However, dispersal to other areas of the Antarctic Peninsula may occur via human-assisted transportation, highlighting the importance of appropriate biosecurity measures.  相似文献   

13.

Aim

To present a synthesis of past biogeographic analyses and a new approach based on spatially explicit biodiversity information for the Antarctic region to identify biologically distinct areas in need of representation in a protected area network.

Location

Antarctica and the sub‐Antarctic.

Methods

We reviewed and summarized published biogeographic studies of the Antarctic. We then developed a biogeographic classification for terrestrial conservation planning in Antarctica by combining the most comprehensive source of Antarctic biodiversity data available with three spatial frameworks: (1) a 200‐km grid, (2) a set of areas based on physical parameters known as the environmental domains of Antarctica and (3) expert‐defined bioregions. We used these frameworks, or combinations thereof, together with multivariate techniques to identify biologically distinct areas.

Results

Early studies of continental Antarctica typically described broad bioregions, with the Antarctic Peninsula usually identified as biologically distinct from continental Antarctica; later studies suggested a more complex biogeography. Increasing complexity also characterizes the sub‐Antarctic and marine realms, with differences among studies often attributable to the focal taxa. Using the most comprehensive terrestrial data available and by combining the groups formed by the environmental domains and expert‐defined bioregions, we were able to identify 15 biologically distinct, ice‐free, Antarctic Conservation Biogeographic Regions (ACBRs), encompassing the continent and close lying islands.

Main conclusions

Ice‐free terrestrial Antarctica comprises several distinct bioregions that are not fully represented in the current Antarctic Specially Protected Area network. Biosecurity measures between these ACBRs should also be developed to prevent biotic homogenization in the region.  相似文献   

14.
Heterotrophic bacteria isolated from five aquatic microbial mat samples from different locations in continental Antarctica and the Antarctic Peninsula were compared to assess their biodiversity. A total of 2,225 isolates obtained on different media and at different temperatures were included. After an initial grouping by whole-genome fingerprinting, partial 16S rRNA gene sequence analysis was used for further identification. These results were compared with previously published data obtained with the same methodology from terrestrial and aquatic microbial mat samples from two additional Antarctic regions. The phylotypes recovered in all these samples belonged to five major phyla, Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes and Deinococcus-Thermus, and included several potentially new taxa. Ordination analyses were performed in order to explore the variance in the diversity of the samples at genus level. Habitat type (terrestrial vs. aquatic) and specific conductivity in the lacustrine systems significantly explained the variation in bacterial community structure. Comparison of the phylotypes with sequences from public databases showed that a considerable proportion (36.9%) is currently known only from Antarctica. This suggests that in Antarctica, both cosmopolitan taxa and taxa with limited dispersal and a history of long-term isolated evolution occur.  相似文献   

15.
A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.  相似文献   

16.
《BBA》2020,1861(2):148139
An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.  相似文献   

17.
18.
Throughout the Southern Hemisphere many terrestrial taxa have circum-Antarctic distributions. This pattern is generally attributed to ongoing dispersal (by wind, water, or migrating birds) or relict Gondwanan distributions. Few of these terrestrial taxa have extant representatives in Antarctica, but such taxa would contribute to our understanding of the evolutionary origins of the continental Antarctic fauna. Either these taxa have survived the harsh climate cooling in Antarctica over the last 23 Myr (Gondwanan/vicariance origin) or they have dispersed there more recently (<2 MYA). In this context, we examined mtDNA (COI) sequence variation in Cryptopygus and related extant Antarctic and subantarctic terrestrial springtails (Collembola). Sequence divergence was estimated under a maximum likelihood model (general time reversible+I+Gamma) between individuals from subantarctic islands, Australia, New Zealand, Patagonia, Antarctic Peninsula, and continental Antarctica. Recent dispersal/colonization (<2 MYA) of Cryptopygus species was inferred between some subantarctic islands, and there was a close association between estimated times of divergences based on a molecular clock and proposed geological ages of islands. Most lineages generally grouped according to geographic proximity or by inferred dispersal/colonization pathways. In contrast, the deep divergences found for the four endemic Antarctic species indicate that they represent a continuous chain of descent dating from the break up of Gondwana to the present. We suggest that the diversification of these springtail species (21-11 MYA) in ice-free glacial refugia throughout the Trans-Antarctic Mountains was caused by the glaciation of the Antarctic continent during the middle to late Miocene.  相似文献   

19.
Lichens are the dominant organisms in terrestrial Antarctic ecosystems and show a decline in species number, coverage, and growth rate from the maritime Antarctic (62°S) to the McMurdo Dry Valleys (78°S). While Livingston Island (maritime Antarctica) is a hot spot for lichen biodiversity, the McMurdo Dry Valleys (continental Antarctica) are known as one of the most extreme environments for life. Previous studies suggest the biodiversity gradient to be linked to water availability acting through length of active period, but no activity data are available for the Dry Valleys. The work presented here compares metabolic activity of lichens at Livingston Island and the Dry Valleys for 4½ months from continuous monitoring that involves concurrent measurements of chlorophyll fluorescence and microclimate. The latitudinal comparison involves two contrasting habitats for plant physiological activity and microclimate. Two species of the foliose genus Umbilicaria were monitored in both regions plus one sample of the crustose Caloplaca in the Dry Valleys. The results showed a very large difference in the duration of activity over the monitoring period, and this supports the different coverage, species abundance, and growth rates already reported for lichens between both regions. Despite this large difference in activity, and in habitat conditions, analysis of the activity behaviour of the two Umbilicaria species shows interesting common features, while the crustose Caloplaca had additional strategies to improve hydration. This offers one explanation for the abundance of crustose lichens inside the Valleys, indicating better adaptation strategies to a polar desert.  相似文献   

20.
The two non‐native grasses that have established long‐term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress‐tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site‐specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature‐based bioclimatic GIS layers for ice‐free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号