首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cry2Aa and cry2Ab genes from a Brazilian Bacillus thuringiensis strain were introduced into the genome of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in order to evaluate the heterologous proteins expression in insect cells and their toxicity to different insects. The recombinant viruses (vAcCry2Aa and vSynCry2Ab) were amplified in Trichoplusia ni (BTI-Tn5B1-4) cells and used to infect Spodoptera frugiperda larvae. Total extracts from S. frugiperda infected with the recombinant viruses were analysed by SDS-PAGE, which detected the presence of polypeptides around 65 kDa. Cuboid-shaped protein crystals were observed in insect extracts by light and scanning electron microscopy. Bioassays, using the heterologous proteins showed toxicity against second instar A. gemmatalis larvae (Cry2Aa) with a LC50 of 1.03 μg/ml and second instar S. frugiperda larvae (Cry2Ab) with a LC50 of 3.45 μg/ml. No toxic activity was detected for Aedes aegypti and Culex quinquenfaciatus.  相似文献   

2.
3.
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.  相似文献   

4.
《Biological Control》2013,64(2):101-105
Eriopis connexa (Germar) (Coleoptera: Coccinellidae) is an important predator with potential for biological control of insect pests. This research evaluated the development of E. connexa larvae fed on fresh eggs of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) without (T1) or with (T2) scales or one-day (T3) or six-month (T4) frozen, or newly-hatched larvae of S. frugiperda (T5). The percentage of E. connexa adults was higher when larvae feeding on fresh S. frugiperda eggs with or without scales, or one-day frozen eggs of this prey and lower with eggs of this Lepidoptera after frozen for six months or with newly-hatched larvae of S. frugiperda. Duration of the larval period of E. connexa was 15.7, 15.8, 16.0, 17.6, and 17.3 days, respectively, with these diets. The high survival of E. connexa fed with eggs of S. frugiperda shows the potential use of this prey in the laboratory to maintain this natural enemy.  相似文献   

5.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) causes significant losses in corn crops and necessitates the use of alternative control strategies, such as the application of bioinsecticides. We report the effect of methanolic leaf extracts of Annona dioica, Annona cacans, and Annona coriacea on the development and reproduction of S. frugiperda. A quantitative analysis was carried out to determine the total concentration of phenolics, flavonoids, and condensed tannin (CT) in leaf extracts. Corn leaves were immersed in a 1% methanolic leaf extract solution and fed to second instars of S. frugiperda. Leaf disks dipped in the synthetic insecticide Connect® (Bayer CropScience Ltda) composed of a neonicotinoid (imidacloprid) and a pyrethroid (β-cyfluthrin), which are harmful to S. frugiperda, was used as positive control. Distilled water was used as a negative control treatment. The leaf extract of A. coriacea decreased larval survivorship, arrested pupal development, and affected the weight gain of S. frugiperda. A. dioica also affected larval survivorship, but its effects were more pronounced for the adult stage, as fecundity, fertility, egg hatchability, and embryonic development were severely affected. Leaf extracts from A. cacans had no effect on S. frugiperda. The leaf extracts of A. dioica and A. coriacea showed a higher content of flavonoids and phenols, respectively. Our results indicated that both A. dioica and A. coriacea have the potential for development as botanical insecticides.  相似文献   

6.
7.
Sasakia funebris, a member of the lepidopteran family, Nymphalidae (superfamily Papilionoidea) is a rare species and is found only in some areas of South China. In this study, the 15,233 bp long complete mitochondrial genome of S. funebris was determined, and harbors the gene arrangement identical to all other sequenced lepidopteran insects. The nucleotide composition of the genome is highly A + T biased, accounting for 81.2%. All protein-coding genes (PCGs) start with typical ATN codons, except for COI which begins with the CGA codon. All tRNAs have a typical clover-leaf secondary structure, except for tRNASer(AGN), the dihydrouridine (DHU) arm of which forms a simple loop. The S. funebris A + T-rich region of 370 bp contains several features common to the Lepidoptera insects, including the motif ATAGA followed by a 19 bp poly-T stretch, and two tandem repeats consisting of 18 bp repeat units and 14 bp repeat units. The phylogenetic analyses of Apaturinae based on mitogenome sequences showed: (S. funebris + Sasakia charonda) + (Apatura metis + Apatura ilia). This result is consistent with the morphological classification.  相似文献   

8.
《Journal of Asia》2021,24(4):1144-1152
In insects, proteolytic cascades medicated by serine proteases (SPs), serine protease homologs (SPHs) and prophenoloxidases (PPOs) control several physiological processes, notably the innate immunity. However, no attempts have been made to identify and characterize these genes in Spodoptera frugiperda, one of the most destructive agricultural pests. In this study, 83 SPs, 26 SPHs and four PPOs were respectively identified in S. frugiperda genome based on homology blast against those of other insects. We then analyzed the domain organization of these proteins and assigned them into different groups by phylogenetic reconstruction. Furthermore, the mRNA levels of clip-domain SPs/SPHs (cSPs/cSPHs) and PPOs were quantified in response to a mixed infection of Micrococcus luteus and Escherichia coli, and obvious accumulations were recorded in immune tissues, including hemocytes and fat body. In the latter study, we profiled the expression patterns of highly expressed cSPs and PPOs in different developmental stages, including egg, larva, pupa, female and male adults. It was shown that most cSPs were abundantly expressed in adults, while PPOs were detected at high levels in both egg and larval stages. These current findings substantially add to our understanding of the roles of S. frugiperda SPs, SPHs and PPOs in immune regulation and further lay a solid foundation for uncovering the interaction mechanisms between insects and pathogens.  相似文献   

9.
Continuous cell cultures were established from imaginal wing discs of 2 Lepidoptera, Spodoptera frugiperda and Plodia interpunctella. The S. frugiperda line (IAL-SFD1) grows as multicellular vesicles and responds morphologically and biochemically to the insect hormone, 20-hydroxyecdysone. In contrast, the P. interpunctella cells (IAL-PID2) grow as attached monolayers of small spindle-shaped cells and do not appear to have specific responses to 20-hydroxyecdysone, although growth rates are slowed in these cells upon exposure to the hormone.  相似文献   

10.
Porella, the largest genus of the family Porellaceae (Hepaticae) is widespread in the tropical and subtropical regions of South America. Most Porella species are rich sources of sesqui- and diterpenoids, many of which show interesting biological activities. Secondary metabolites produced by plants can interact with insects and act as antifeedants and growth regulators affecting hormone and nervous systems as well as stomach and muscle tissues. A previous chemical investigation of a Patagonian collection of Porella chilensis yielded sesqui- and diterpenoids that were now evaluated for their effects against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), a serious pest affecting corn crops mainly in the Americas. Four pinguisanes (1?C4), three fusicoccanes (5?C7), and one aromadendrane (8) from P. chilensis displayed larvicidal activity against S. frugiperda when incorporated to the larval diet at 100 and 200???g/g of diet with a significant decrease in the larval growing rate. The observed effects were in part produced by severe alterations of the epithelial cells of the midgut as indicated by our histological studies.  相似文献   

11.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

12.
BackgroundThe species from the genus Phytolacca constitute one of the best sources of ribosome-inactivating proteins (RIPs) that have been used both in the therapy against virus and tumors and in the construction of transgenic plants resistant to virus, bacteria, fungi and insects. Here we investigate new activities of three representative RIPs from Phytolacca dioica (dioicin 2, PD-S2 and PD-L4).ResultsThe three RIPs displayed, in addition to already reported activities, rRNA N-glycosylase activities against plant, bacterial and fungal ribosomes. Additionally dioicin 2 and PD-L4 displayed endonuclease activity on a supercoiled plasmid DNA, and dioicin 2 and PD-S2 arrested the growth of the fungus Penicillium digitatum. Furthermore, dioicin 2 induced caspase activation and apoptosis in cell cultures.ConclusionsThe different activities of the RIPs from Phytolacca dioica may explain the antipathogenic properties attributed to these RIPs in plants and their antiviral and antitumoral effects. In spite of the similarity in their rRNA N-glycosylase and DNA polynucleotide:adenosine glycosylase activities, they differed in their activities against viral RNA, plasmid DNA, fungi and animal cultured cells. This suggests that the presence of isoforms might optimize the response of the plant against several types of pathogens.General significanceRIPs from Phytolacca can induce plant resistance or tumor cell death not only by means of ribosome inactivation but also by the activities found in this report. Furthermore, the induction of cell death by different mechanisms turns these RIPs into more useful tools for cancer treatment rendering the selection of RIP-resistant mutants impossible.  相似文献   

13.
In this investigation, the anterior and posterior regions of the midgut of resistant (RL) and non-resistant (SL) Anticarsia gemmatalis larvae were analyzed morphometrically to characterize different regions along their length. Also, this investigation compares the results between SL and RL to improve the understanding of the resistance mechanisms to the virus. Histological sections were analyzed in a computerized system and the data were statistically analyzed by the Kruskal-Wallis test and by multivariate analysis. The midguts are morphometrically different in the two larval populations; we observed higher values in RL. The morphometric analysis of the epithelial cells showed that only columnar and goblet cells were distinct along the midgut, in both larvae, with the higher values found in the anterior region. Comparing the results between the two larval populations, all the epithelial cells presented significant differences, with RL showing the higher morphometric values. We concluded that there are regional differences along the length of midgut in SL and RL that confirm the idea of two morpho-functional distinct regions. The consistently morphometric superior values in RL indicate that this variability can be related with the resistance of A. gemmatalis to its AgMNPV.  相似文献   

14.
《Journal of Asia》2022,25(1):101862
Spodoptera frugiperda is a highly invasive pest species that recently invaded Africa and Asia causing severe economic losses, primarily related to corn and rice crops. Temperature is one of the most important environmental factors that influence the invasion of pests into new habitats. However, little is known regarding the thermal tolerance characteristics of invasive S. frugiperda. Thus, we investigated the response of four developmental stages of S. frugiperda (i.e., eggs, third and sixth instar larvae, and pupae) to cold acclimation (CA) and rapid cold-hardening (RCH). All individuals suffered high mortality with 24-h temperature treatments at <?5°C and >35 °C. The CA treatment significantly increased the survival rate of the eggs and third instar larvae, although it did not affect the sixth instar larvae and it decreased the pupation rate. The RCH treatment at 5 °C for 5 h or 2 °C for 2 h increased the cold tolerance capabilities of the third and sixth instar larvae, respectively. Thus, the larval stage appears to be crucial for the cold tolerance of S. frugiperda. Our findings improve the current understanding of the cold tolerance characteristics of S. frugiperda and indicate its potential for survival in the newly invaded temperate regions of Asia.  相似文献   

15.
Caterpillars of Pieris rapae L. (Lepidoptera: Pieridae) convert 4-hydroxybenzylglucosinolate (sinalbin) in brassicaceous plants into 4-hydroxybenzylcyanide sulfate (HBC sulfate), with 4-hydroxybenzylcyanide (HBC) as intermediate. This apparently serves as a detoxification, because alternative formation of a mustard oil is avoided. We confirmed the capacity of P. rapae to convert the intermediate HBC into HBC sulfate. Four additional Pieridae – Anthocaris cardamines L., Pieris virginiensis Harris, Pieris napi oleracea Edwards and Pieris brassicae L., likewise excreted HBC sulfate after ingesting leaves with topically added HBC or leaves naturally containing sinalbin and myrosinase, but not after ingesting control leaves devoid of HBC and sinalbin. We confirmed the capacity of the most distantly related pierid species (A. cardamines) for converting ingested (topically added) sinalbin into HBC sulfate. Larvae of two non-pierid Brassicaceae-feeding insects, the oligophagous sawfly Athalia rosae L. (Hymenoptera: Tenthrenidae) and the polyphagous moth Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), did not excrete HBC sulfate after ingesting sinalbin-containing leaves or topically added HBC.  相似文献   

16.
Complementary DNAs encoding homologs of the tumor suppressor gene, p53, were characterized from two lepidopteran insects, Bombyx mori (Bm) and Spodoptera frugiperda (Sf). They encoded predicted proteins of 368 (41.2 kDa) (Bm) and 374 (42.5 kDa) (Sf) amino acids. The sequences shared 44% amino acid and 60% nucleotide sequence identity with each other, but exhibited less than 20% amino acid and 46% nucleotide sequence identity to Drosophila melanogaster p53. Despite the sequence diversity, conserved amino acids involved in DNA and zinc binding were present in the lepidopteran sequences. Expression of Sfp53-induced apoptosis in S. frugiperda cells, and antiserum made against recombinant Sfp53 recognized a protein whose abundance increased after treatment with DNA damaging agents.  相似文献   

17.
Some baculovirus have been genetically modified for the inactivation of their ecdysteroid glucosyltransferase (egt) gene, and these viruses were shown to kill infected larvae more rapidly when compared to wild-type virus infections. We have previously identified, cloned, and sequenced the egt gene of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV). Here we present data regarding the construction of an egt minus (egt−) AgMNPV and its virulence towards its insect host. We have inserted an hsp70-lacZ (3.7 kb) gene cassette into the egt gene open reading frame (ORF) and purified a recombinant AgMNPV (vAgEGTΔ-lacZ). Bioassays with third-instar A. gemmatalis larvae showed that viral occlusion body (OB) production were consistently lower from infections with vAgEGTΔ-lacZ compared to the wild-type virus. A mean of 20.4×108 OBs/g/larva and 40.7×108 OBs/g/larva was produced from vAgEGTΔ-lacZ and AgMNPV infections, respectively. The mean lethal concentration which killed 50% of insects in a treatment group (LC50) for the 10th day after virus treatment (DAT) was 3.9-fold higher for the wild-type virus compared to vAgEGTΔ-lacZ. The recombinant virus killed A. gemmatalis larvae significantly faster (ca. 1–2.8 days), than the wild-type AgMNPV. Therefore, the vAgEGTΔ-lacZ was more efficacious for the control of A. gemmatalis larvae (in bioassays) compared to wild-type AgMNPV.  相似文献   

18.
Plant extracts represent a great source of molecules, with insecticidal activity, which are used for pest control in several crop production systems. This work aimed to evaluate the toxicity of an aqueous extract of leaves of castor bean against larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in search for different classes of molecules with insecticidal activities by using in vitro assays. The effects of the castor bean leaf extract on the food utilization, development, and survival of S. frugiperda larvae was evaluated by feeding the larvae an artificial diet supplemented with different concentrations of the extract (0%, 1%, 2.5%, 5%, and 10% w/v). The effects observed were dose-dependent, and the highest concentration evaluated (10% w/v) was the one the most affected food utilization by altering the nutritional indices, as well as larval weight gain, development time, and survivorship. In vitro assays to detect saponins, lectins, and trypsin inhibitors in the castor bean leaf extract were performed, but only trypsin inhibitors were detected. No preference for the diet source was detected in S. frugiperda by feeding the larvae in choice experiments with diets containing different concentrations of the castor bean extract tested. The data obtained indicate the existence of a potential molecule in the tested extract of castor bean to be used as an alternative insecticide to be integrated in the management of S. frugiperda.  相似文献   

19.
The binding and pore formation properties of four Bacillus thuringiensis Cry1 toxins were analyzed by using brush border membrane vesicles from Spodoptera exigua and Spodoptera frugiperda, and the results were compared to the results of toxicity bioassays. Cry1Fa was highly toxic and Cry1Ac was nontoxic to S. exigua and S. frugiperda larvae, while Cry1Ca was highly toxic to S. exigua and weakly toxic to S. frugiperda. In contrast, Cry1Bb was active against S. frugiperda but only marginally active against S. exigua. Bioassays performed with iodinated Cry1Bb, Cry1Fa, and Cry1Ca showed that the effects of iodination on toxin activity were different. The toxicities of I-labeled Cry1Bb and Cry1Fa against Spodoptera species were significantly less than the toxicities of the unlabeled toxins, while Cry1Ca retained its insecticidal activity when it was labeled with 125I. Binding assays showed that iodination prevented Cry1Fa from binding to Spodoptera brush border membrane vesicles. 125I-labeled Cry1Ac, Cry1Bb, and Cry1Ca bound with high-affinities to brush border membrane vesicles from S. exigua and S. frugiperda. Competition binding experiments performed with heterologous toxins revealed two major binding sites. Cry1Ac and Cry1Fa have a common binding site, and Cry1Bb, Cry1C, and Cry1Fa have a second common binding site. No obvious relationship between dissociation of bound toxins from brush border membrane vesicles and toxicity was detected. Cry1 toxins were also tested for the ability to alter the permeability of membrane vesicles, as measured by a light scattering assay. Cry1 proteins toxic to Spodoptera larvae permeabilized brush border membrane vesicles, but the extent of permeabilization did not necessarily correlate with in vivo toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号