首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The consequences of variations in environmental temperature on innate immune responses in birds are by and large not known. We investigated the influence of ambient temperature on the febrile response in female Pekin ducks (Anas platyrhynchos). Ducks, implanted with temperature data loggers to measure body temperature, were injected with lipopolysaccharide (100 μg kg−1) to evoke febrile responses and kept at ambient temperatures higher, within, and lower than their thermoneutral zone (n=10), and in conditions that simulated one day of a heat wave (n=6). Compared to the febrile response at thermoneutrality, at low temperatures, febrile responses were significantly attenuated; fevers reached lower magnitudes (from basal body temperature of 41.2±0.3 °C to a peak of 42.0±0.3 °C). In contrast, at high ambient temperatures, ducks rapidly developed significantly enhanced fevers, which reached markedly higher febrile peaks (from basal body temperature of 41.6 °C to a peak of 44.0 °C in a simulated heat wave when ambient temperature reached 40 °C). These results indicate that ambient temperature affects the febrile response in female Pekin ducks. Our findings reveal a key difference in febrile mediation between ducks and mammals, and have implications for avian survival because high environmental temperatures during febrile mediation could lead to febrile responses becoming physiologically deleterious.  相似文献   

2.
The fungal pathogen Neozygites floridana Weiser and Muma has been evaluated as a classical biological candidate for introduction into Africa against the invasive tomato red spider mite Tetranychus evansi Baker and Pritchard. In this study, the effect of temperature on sporulation, germination and virulence of three isolates of N. floridana collected from T. evansi in three climatically distinct regions of Brazil and Argentina was determined. Six constant temperatures of 13 °C, 17 °C, 21 °C, 25 °C, 29 °C and 33 °C were tested for their effect on the ability of the three fungal isolates to sporulate, germinate and kill the mites. Six alternating-temperature regimes of 17-13 °C, 21-13 °C, 29-13 °C, 33-13 °C, 33-23 °C, 33-28 °C under a 12 h photophase were also tested to estimate virulence of the three isolates against T. evansi. The Vipos isolate discharged more conidia than isolates from Recife or Piracicaba at all temperatures and sporulation was strongly temperature dependent. Optimal sporulation rates were observed at 25 °C while optimal germination rates were observed at 25 °C and 29 °C. At 29 °C, the shortest mean survival time of T. evansi (3.16 days, 95% CI of 3.05-3.27) was observed for the isolate from Vipos, while the longest LT50 (3.47 days, 95% CI 3.34-3.59) was observed for the isolate from Piracicaba. Mortality of mites increased as the differences between alternating day and night temperatures increased from 8 °C (21-13 °C), to 10 °C (33-23 °C), to 16 °C (29-13 °C), with smallest and highest temperature differences of 4 °C (17-13 °C) and 20 °C (33-13 °C), both producing low mortalities. The overall results suggest that the Vipos isolate is better adapted to a wider range of temperatures than the other isolates tested.  相似文献   

3.
Thermoregulatory responses are known to differ seasonally in endotherms and this is often dependent on the environment and region they are resident. Holarctic animals are exposed to severe winters and substantial seasonal variation in ambient temperature. In contrast, those in the Afrotropics have less severe winters, but greater variation in temperature, rainfall and net primary production. These environmental factors place different selection pressures on physiological responses in endotherms. In this study, metabolic rate (VO2) and body temperature (Tb) were measured in captive bred Rock Kestrels (Falco rupicolus) from the Afrotropics after a period of summer and winter acclimatisation. Resting metabolic rate was significantly lower after the winter acclimatisation period than after the summer acclimatisation period, and there was a shift in the thermoneutral zone from 20–33 °C in summer to 15–30 °C in winter. However, no significant difference in basal metabolic rate between summer and winter was found. The results show that Rock Kestrels reduce energy expenditure at low ambient temperatures in winter as expected in an Afrotropical species.  相似文献   

4.
Mating plugs are formed within the female reproductive tract during mating from male ejaculate constituents or even from male genitalia themselves. Across species, mating plugs have roles in sperm storage and the prevention of female remating. In the fruitfly Drosophila melanogaster, accessory gland proteins such as the sex peptide are known to reduce female remating, however this effect can take some time to establish, hence other ejaculate components must also be involved. We hypothesised a role for the PEBII mating plug protein in the prevention of early female remating. Using RNA interference we produced PEBII knockdown males. We found that these males were significantly less able to prevent female remating in the 4 h following mating. The mating plugs produced by PEBII knockdown males also showed lower levels of autofluorescence in the first 10 min after the start of mating, suggesting they differed in composition to those of control males. Reduced levels of PEBII had no effect, however, on fecundity, progeny production or egg-adult viability in the first 24 after mating, suggesting there were no short-term effects of PEB II on sperm transfer, storage or use. Our results show that PEBII has a subtle but significant role in the prevention of early female remating.  相似文献   

5.
The copulation duration of male wolf spider Pardosa astrigera, was significantly influenced by environmental temperature, as had been found in some insect species. Therefore, temperature during male courtship and copulation may influence the amount of sperm and seminal fluids transferred during copulation, which in turn could influence female fitness. In order to test this hypothesis, we subjected pairs of male and female P. astrigera to five temperature groups from 16 to 32 °C at an interval of 4 °C, and investigated whether and to what extent the various temperatures during male courtship and copulation influenced female reproductive output and female adult longevity under controlled laboratory conditions. With the increase of copulation temperature, females were more likely to lay egg sacs. The total egg sacs and lifetime fecundity of female were positively influenced by copulation temperature, whereas female lifetime spiderlings and adult longevity were independent of copulation temperature.  相似文献   

6.
We incubated eggs of the Chinese ratsnake Zaocys dhumnades at four constant temperatures (24, 27, 30 and 30 °C) to examine the effects of incubation temperature on hatching success and hatchling phenotypes. Incubation length increased nonlinearly as temperature decreased, with the mean incubation length being 76.7 d at 24 °C, 57.4 d at 27 °C, 47.3 d at 30 °C, and 44.1 d at 33 °C. Hatching successes were lower at the two extreme temperatures (69% at 24 °C, and 44% at 33 °C) than at the other two moderate temperatures (96% at 27 °C, and 93% at 30 °C). Incubation temperature affected nearly all hatchling traits examined in this study. Incubation of Z. dhumnades eggs at 33 °C resulted in production of smaller hatchlings that characteristically had less-developed carcasses but contained more unutilized yolks. Hatchlings from eggs incubated at 27 and 30 °C did not differ in any examined traits. Taking the rate of embryonic development, hatching success and hatchling phenotypes into account, we conclude that the temperature range optimal for incubation of Z. dhumnades eggs is narrower than the range of 24−33 °C but should be wider than the range of 27−30 °C.  相似文献   

7.
Curculio sikkimensis undergoes prolonged larval diapause that is terminated by chilling and warming cycles. To examine the effects of warming temperatures and their duration on diapause termination, we exposed diapause larvae that had not been reactivated after chilling at 5 °C to 20 or 25 °C and chilled them again before incubation at 20 °C. With increasing warming duration at 20 °C, diapause termination after chilling increased and shorter chilling durations became effective. In contrast, few or no larvae warmed at 25 °C terminated diapause after chilling, irrespective of the warming duration. To investigate the effect of warming temperature on diapause intensity, larvae with diapause weakened by initial incubation at 20 °C after the first chilling were subsequently incubated at 15, 20, or 25 °C, then chilled at 5 °C before incubation at 20 °C. Diapause termination increased significantly after the larvae were treated at 15 or 20 °C but decreased significantly after they were treated at 25 °C. The intensification of prolonged diapause at 25 °C was reversed when the larvae were transferred to 20 °C. Diapause intensity in C. sikkimensis therefore decreases at 20 °C, increases at 25 °C, and can be reversed by alternately exposing diapause larvae to 20 and 25 °C. In C. sikkimensis, prolonged diapause does not always proceed in one direction, and its intensity fluctuates in response to ambient temperature conditions.  相似文献   

8.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

9.
Changes in ambient temperature produce complex effects on sleep–wakefulness. In order to find out the mechanisms involved in temperature-sensitive changes in sleep in rats, their thermal preference, body temperature and sleep were studied before and after the destruction of both peripheral and central warm receptors, by systemic administration of 375 mg/kg capsaicin. Though the pre-treated rats preferred to stay mostly at the ambient temperature of 27 °C, post-treated rats strayed freely into chambers having ambient temperature of 30 °C and 33 °C. Sleep and body temperature of these rats were studied for six hours each, when they were kept at an ambient temperature of 18–36 °C. Total sleep time, especially REM sleep, was maximum at 30 °C in pre-treated rats, but this REM sleep peak at 30 °C disappeared after capsaicin administration. Body temperature increased sharply in post-treated rats, at ambient temperatures above 30 °C. Apart from the ability to defend body temperature at high ambient temperature, avoidance of warm ambient temperature and increase in REM sleep are the behavioral measures which are lost in post-treated rats. Results of this study suggest that the ambient temperature-related increase in REM sleep at 30 °C could be part of the thermoregulatory measures.  相似文献   

10.
Our goals were to: (1) determine if domestic cat sperm could be sorted to high purity by flow cytometry after overnight shipment of cooled samples; (2) evaluate the efficiency with which sorted sperm could be used to generate cat embryos in vitro; and (3) determine if live kittens of predetermined sex could be produced after transfer of embryos derived by IVF using sorted sperm. Semen samples (n = 5) from one male were extended in electrolyte-free solution and shipped overnight at 4 °C to the sorting facility. Samples were adjusted to 75 × 106 sperm/mL and stained with Hoechst 33342. After 1 h at 34.5 °C, samples were adjusted to 50 × 106 sperm/mL with 4% egg yolk TALP + 0.002% food dye and sorted by high-speed flow cytometry. Later resort analysis confirmed purities of 94% and 83% for X- and Y-chromosome bearing sperm, respectively. Sorted sperm were centrifuged, re-suspended in TEST yolk buffer and shipped overnight to the IVF laboratory. After IVF of in vivo matured oocytes with X-chromosome bearing sperm, cleavage frequency was 62% (54/87). After IVF of IVM oocytes with control, X- or Y-chromosome bearing sperm, the incidence of cleavage was 42% (48/115), 33% (40/120), and 35% (52/150), respectively, and blastocyst development was 53% (21/40), 50% (11/22), and 55% (23/42), respectively (P > 0.05). On Day 2, 45 embryos produced by IVF of in vivo matured oocytes with X-chromosome bearing sperm were transferred to the oviduct of four Day 1 recipients, three of which subsequently delivered litters of one, four, and seven female kittens, respectively. In conclusion, we confirmed that sperm sorting technology can be applied to domestic cats and established that kittens of predetermined sex can be produced.  相似文献   

11.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

12.
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 °C above and below optimum growth temperature of 29 °C (i.e. 25, 29, 33 °C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13 min with acclimation at 33-25 °C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 °C: 18.25, 29 °C: 18.07, 33 °C: 25.5 min). Thermal optima for running speed were higher (39.4-40.6 °C) than those for jumping performance (25.6-30.9 °C). Acclimation temperature affected jumping distance but not running speed (general linear model, p = 0.0075) although maximum performance (UMAX) and optimum temperature (TOPT) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of TOPT, UMAX and the temperature breadth (TBR) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 °C vs. 20-30% at 25 and 29 °C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.  相似文献   

13.
On Bermuda reefs the brain coral Diploria labyrinthiformis is rarely documented with black band disease (BBD), while BBD-affected colonies of Diploria strigosa are common. D. labyrinthiformis on these reefs may be more resistant to BBD or less affected by prevailing environmental conditions that potentially diminish host defenses. To determine whether light and/or temperature influence BBD differently on these two species, infection experiments were conducted under the following experimental treatments: (1) 26 °C, ambient light; (2) 30 °C, ambient light; (3) 30 °C, low light; and (4) 30 °C, high light. A digital photograph of the affected area of each coral was taken each day for 7 days and analyzed with ImageJ image processing software. The final affected area was not significantly different between species in any of the four treatments. BBD lesions were smaller on both species infected under ambient light at 26 °C versus 30 °C. Low light at 30 °C significantly reduced the lesion size on both species when compared to colonies infected at the same temperature under ambient light. Under high light at 30 °C, BBD lesions were larger on colonies of D. strigosa and smaller on colonies of D. labyrinthiformis when compared to colonies infected under ambient light at the same temperature. The responses of both species suggests that BBD progression on both D. strigosa and D. labyrinthiformis is similarly influenced by a combination of light and temperature and that other factors present before infections become established likely contribute to the difference in BBD prevalence in Bermuda.  相似文献   

14.
Octopus mimus is an important cephalopod species in the coastal zone of Peru and Chile that is exposed to temperature variations from time to time due to El Niño/Southern Oscillation (ENSO) episodes when surface temperatures can reach 24 °C, 6 °C above typical temperatures in their habitat. The relationships between temperature and food availability are important factors that determine the recruitment of juveniles into the O. mimus population. The present study was to evaluate the relationship between thermoregulatory behavior and the age of paralarvae (summer population) to determine whether changes in this behavior occur during internal yolk consumption, making larvae more vulnerable to environmental temperature change. Oxygen consumption of paralarvae when 1–4 d old was determined to establish if respiration could be used to monitor the physiological changes that occur during yolk consumption. Horizontal thermal selection (17–30 °C), critical thermal maxima (CTMax), minima (CTMin), and oxygen consumption experiments were conducted with fasting paralarvae 1–4 d old at 20 °C. Preferred temperatures were dependent on the age of O. mimus paralarvae. One day old paralarvae selected a temperature 1.1 °C (23·4 °C) higher than 2 – 4 d old paralarvae (22·3 °C). The CTMax of paralarvae increased with age with values of 31·9±1.1 °C in 1-d-olds and 33·4±0.3 to 4-d-olds. CTMin also changed with age with low values in 2-d-old paralarvae (9.1±1·3 °C) and 11·9±0·9 °C in 4-d-old animals. The temperature tolerance range of paralarvae was age-dependent (TTD=difference between CTMax and CTMin) with higher values in 2 and 3 d old paralarvae (25–26 °C) as compared to 1 d old (23·1 °C) and 4 d old animals (22.7 °C). Oxygen consumption was not affected by the age of paralarvae, suggesting that mechanisms exist that compensate their metabloism until at least 4 d of age. The temperature tolerance range of a planktonic paralarvae of octopus species is presented for the first time. This range was dependent on the age of paralarvae, and so rendered the paralarvae more vunerable to a combination of high temperature and food deprivation during first days of life. Results in the present study provide evidence that O. mimus could be under ecological pressure if a climate change causes increased or decreased temperatures into their distribution range.  相似文献   

15.
Responses of the antennal thermosensitive neuron of the ground beetle Platynus assimilis to warming from 20 to 50 °C were measured and analysed. During warming, neurons switched from regular spiking to bursting. ISI analysis showed that the number of spikes in the burst and spike frequency within the burst were temperature dependent and may precisely encode unfavourably or dangerously high temperatures in a graded manner. In contrast, regular spikes of the neuron encode moderate temperatures at 20-30 °C. The threshold temperature of spike bursting varied in different neurons from 25 to 47 °C. As a result, the number of bursting neurons increased with temperature increase. Therefore, in addition to the burst characteristics, the total number of bursting neurons may also contain useful information on external temperature. A relationship between the spike bursts and locomotor activity of the beetles was found which may have importance in behavioural thermoregulation of the species. At 44.4 ± 0.6 °C, first indications of partial paralysis (of the hind legs) were observed. We emphasize, that in contrast to various sensory systems studied, the thermoreceptor neuron of P. assimilis has a stable and continuous burst train, no temporal information is encoded in the timing of the bursts.  相似文献   

16.
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3 °C; CTmax = 46.1 °C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6–57°C (equating to a body temperature of 24.5–43.1 °C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.  相似文献   

17.
An opportunity to explore the effects of fluctuating temperatures on tropical scleractinian corals arose when diurnal warming (as large as 4.7 °C) was detected over the rich coral communities found within the back reef of Moorea, French Polynesia. In April and May 2007, experiments were completed to determine the effects of fluctuating temperature on Pocillopora meandrina and Porites rus, and consecutive trials were used to expose them for 13 days to 26 °C, 28 °C (ambient conditions), 30 °C, or a fluctuating treatment ranging from 26 to 30 °C over 24 h. The multivariate response was assessed using maximum dark-adapted quantum yield of PSII (FV/FM), Symbiodinium density, chlorophyll-a content, and calcification. In trial 1, multivariate physiology of both species was significantly affected by treatments, with the fluctuating temperature resulting in a 17-45% decline in Symbiodinium density (relative to the ambient) matching that occurring at a constant 30 °C; FV/FM, chlorophyll-a content, and calcification, did not differ between the fluctuating and the steady treatments. In contrast, in trial 2 that utilized corals collected two weeks after those used in trial 1, the corals were unaffected by the treatments, likely due to an environment × trial interaction caused by seasonal declines in Symbiodinium density. Together, these results demonstrate that short transgressions to ecologically relevant high and low temperatures can elicit a potentially detrimental response equivalent to that occurring upon exposure to a constant high temperature. The dissimilar responses among dependent variables and consecutive trials underscore the importance of temporal replication and multivariate approaches in coral ecophysiology. It is likely that recent history has a stronger effect on the response of corals to treatments than is currently recognized.  相似文献   

18.
The present study aims to understand the effects of interindividual differences in thermal comfort on the relationship between the preferred temperature and the thermoregulatory responses to ambient cooling. Thirteen young women subjects chose the preferred ambient temperature (preferred Ta) in a climate chamber and were categorized into the H group (preferring ≥29 °C; n=6) and the M group (preferring <29 °C; n=7). The H group preferred warmer sensations than the M group (P<0.05) and the average of preferred Ta was 27.6 °C and 30.2 °C in the M group and H group, respectively. Then all subjects were exposed to temperature variations in the climate chamber. During Ta variations from 33 °C to 25 °C, the H group felt colder than the M group, although no difference was noted in the Tsk (mean skin temperature) and Ts-hand between the 2 groups. From the view of the relationship between the Tsk and thermal sensation, although the thermal sensitivity to the Tsk was almost similar in the H and M groups, the H group might have lower threshold to decreasing Ta than the M group.  相似文献   

19.
Ocean temperatures are rising and fish are redistributing themselves poleward and into deeper waters to retain a favourable thermal environment (11 and 30). To investigate whether biogeographical shifts might occur through behavioural redistribution into optimal environments, we examined whether a common triplefin species (Forsterygion lapillum) would behaviourally select (i.e. track) a temperature that matches its physiological optimum under laboratory conditions. F. lapillum were acclimated to 15, 18 or 21 °C for at least 4 weeks, after which various rates of oxygen consumption (MO2) were measured using automated respirometry and their behavioural thermal preferenda assessed using an electronic shuttle choice tank. Aerobic metabolic scope (resolved as the difference between maximal and maintenance MO2) did not differ across all thermal treatments (i.e. specimens acclimated to 15, 18 or 21 °C) revealing that F. lapillum is a eurythermal species with a range of optimal physiological performance that closely matches the environmental conditions they are exposed to. A comparably wide range of behavioural preference would perhaps be expected but all three acclimation groups showed a surprisingly narrow behavioural preference range of 20–21 °C. The results therefore suggest that, irrespective of acclimation, eurythermal species may have a tendency to select optimal temperatures at the upper limit of their thermal distribution range. The results are discussed in the context of the ecology and the expected response of F. lapillum to future thermal change.  相似文献   

20.
The control of pulmonary ventilation in South American lungfish Lepidosiren paradoxa is poorly understood. Interactions between temperature and hypoxia are particularly relevant due to large seasonal variations of its habitat. Therefore, we tested the hypothesis that the ventilatory responses to aerial hypoxia of Lepidosiren are highly dependent on ambient temperature. We used a pneumotachograph to measure pulmonary ventilation (VE), tidal volume (VT) and respiratory frequency (fR) during normoxic (21% O2) and hypoxic (12%, 10% and 7% O2) conditions at two temperatures (25 and 35 °C). Blood gases, arterial PO2 (PaO2), arterial PCO2 (PaCO2) and arterial pH (pHa) were also evaluated. At 25 °C, VE increased significantly at 10% and 7% hypoxic levels when compared to the control value (21% O2). At 35 °C, all hypoxic levels elicited a significant increase of VE relative to control values. VE is augmented mostly by increases of respiratory frequency (fR), and there were significant interactions (p<0.001) between aerial hypoxia and temperature. PaCO2 increased from ∼22 mmHg (normoxic value at 25 °C) to ∼32 mmHg (normoxic value at 35 °C). Concomitantly, the pHa decreased from 7.51 (25 °C) to 7.38 (35 °C). Hypoxia-induced hyperventilation caused a reduction in PaCO2 and an increase in pHa, which were more pronounced at 35 °C than at 25 °C, reflecting an increased hyperventilation under the high temperature. In conclusion, the magnitude of ventilatory response is highly temperature-dependent in L. paradoxa, which is important for an animal experiencing large seasonal variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号