首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs), and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y) residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F) AAV6 vector, with which >70% of CD34+ cells could be transduced. With the long-term objective of developing recombinant AAV vectors for the potential gene therapy of human hemoglobinopathies, we generated the wild-type (WT) and tyrosine-mutant AAV6 vectors containing the following erythroid cell-specific promoters: β-globin promoter (βp) with the upstream hyper-sensitive site 2 (HS2) enhancer from the β-globin locus control region (HS2-βbp), and the human parvovirus B19 promoter at map unit 6 (B19p6). Transgene expression from the B19p6 was significantly higher than that from the HS2-βp, and increased up to 30-fold and up to 20-fold, respectively, following erythropoietin (Epo)-induced differentiation of CD34+ cells in vitro. Transgene expression from the B19p6 or the HS2-βp was also evaluated in an immuno-deficient xenograft mouse model in vivo. Whereas low levels of expression were detected from the B19p6 in the WT AAV6 capsid, and that from the HS2-βp in the Y705+731F AAV6 capsid, transgene expression from the B19p6 promoter in the Y705+731F AAV6 capsid was significantly higher than that from the HS2-βp, and was detectable up to 12 weeks post-transplantation in primary recipients, and up to 6 additional weeks in secondary transplanted animals. These data demonstrate the feasibility of the use of the novel Y705+731F AAV6-B19p6 vectors for high-efficiency transduction of HSCs as well as expression of the b-globin gene in erythroid progenitor cells for the potential gene therapy of human hemoglobinopathies such as β-thalassemia and sickle cell disease.  相似文献   

2.

Background

Hepatic gene transfer, in particular using adeno-associated viral (AAV) vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.

Major Findings

AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic β-galactosidase (β-gal) was performed in immune competent mice, followed by a secondary β-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in ∼2% of hepatocytes almost completely protected from inflammatory T cell responses against β-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, ∼10% of hepatocytes continued to express β-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8+ T cell responses to β-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.

Conclusions

These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.  相似文献   

3.
4.
Adeno-associated viruses (AAVs) are single-stranded dependent parvoviruses being developed as transducing vectors. Although at least five serotypes exist (AAV types 1 to 5 [AAV1 to -5]), only AAV2, AAV3, and AAV4 have been sequenced, and the vectors in use were almost all derived from AAV2. Here we report the cloning and sequencing of a second AAV3 genome and a new AAV serotype designated AAV6 that is related to AAV1. AAV2, AAV3, and AAV6 were 82% identical at the nucleotide sequence level, and AAV4 was 75 to 78% identical to these AAVs. Significant sequence variation was noted in portions of the capsid proteins that presumably are responsible for serotype-specific functions. Vectors produced from AAV3 and AAV6 differed from AAV2 vectors in host range and serologic reactivity. The AAV3 and AAV6 vector serotypes were able to transduce cells in the presence of serum from animals previously exposed to AAV2 vectors. Our results suggest that vectors based on alternative AAV serotypes will have advantages over existing AAV2 vectors, including the transduction of different cell types, and resistance to neutralizing antibodies against AAV2. This could be especially important for gene therapy, as significant immunity against AAV2 exists in human populations and many protocols will likely require multiple vector doses.  相似文献   

5.
Adenoviral (Ad) vectors show promise as platforms for vaccine applications against infectious diseases including HIV. However, the requirements for eliciting protective neutralizing antibody and cellular immune responses against HIV remain a major challenge. In a novel approach to generate 2F5- and 4E10-like antibodies, we engineered an Ad vector with the HIV membrane proximal ectodomain region (MPER) epitope displayed on the hypervariable region 2 (HVR2) of the viral hexon capsid, instead of expressed as a transgene. The structure and flexibility of MPER epitopes, and the structural context of these epitopes within viral vectors, play important roles in the induced host immune responses. In this regard, understanding the critical factors for epitope presentation would facilitate optimization strategies for developing viral vaccine vectors. Therefore we undertook a cryoEM structural study of this Ad vector, which was previously shown to elicit MPER-specific humoral immune responses. A subnanometer resolution cryoEM structure was analyzed with guided molecular dynamics simulations. Due to the arrangement of hexons within the Ad capsid, there are twelve unique environments for the inserted peptide that lead to a variety of conformations for MPER, including individual α-helices, interacting α-helices, and partially extended forms. This finding is consistent with the known conformational flexibility of MPER. The presence of an extended form, or an induced extended form, is supported by interaction of this vector with the human HIV monoclonal antibody 2F5, which recognizes 14 extended amino acids within MPER. These results demonstrate that the Ad capsid influences epitope structure, flexibility and accessibility, all of which affect the host immune response. In summary, this cryoEM structural study provided a means to visualize an epitope presented on an engineered viral vector and suggested modifications for the next generation of Ad vectors with capsid-incorporated HIV epitopes.  相似文献   

6.
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.The initial interest in vectors based on adeno-associated viruses (AAV) was for applications in gene therapy. Most of the initial work was with vectors derived from AAV serotype 2 (AAV2), which is one of the six initial isolates. In the first in vivo studies, several groups showed stable expression of the transgene Escherichia coli β-galactosidase following intramuscular (i.m.) injection of AAV2-LacZ without immune responses to the transgene (23, 44). The apparent tolerance of the host to AAV-encoded antigens to a variety of transgene products has been demonstrated in mice and some large animals (1, 35, 39). Several mechanisms have been proposed to explain the lack of T-cell responses following in vivo gene transfer with AAV, including ignorance (inadequate presentation of antigen), anergy, and suppression (1, 5, 18, 37).As applications of AAV vectors for in vivo gene transfer expanded, it became clear that the apparent immune privilege of AAV transgene products was not absolute. A number of examples emerged in which the host mounted vibrant T-cell responses to AAV-encoded transgene products. Several key parameters appeared to influence immunogenicity of the transgene. For example, Sarukhan et al. suggest that the subcellular localization of the protein influences the magnitude of the ensuing T-cell response after AAV gene transfer (37). The dose and route of administration of the AAV vector also contribute significantly to B- and T-cell responses to the transgene (3, 13). Wang et al. showed that inflammation at the site of AAV administration promotes antigen-specific immune responses to the transgene (47). A consistent observation has been that B-cell responses to AAV-encoded transgenes are much more intense and more consistently generated than CD8+ T-cell responses (8, 46, 51). A number of investigators have begun to explore AAV vectors as genetic vaccines against a variety of infectious and noninfectious diseases, based on the notion that it can be developed to stimulate transgene immune responses (14, 22, 26, 28, 48-50).The discovery of an expanded family of AAV capsids from human and nonhuman primates has provided an opportunity to evaluate the effects of capsid structure on vector performance. Most of this work has focused on the use of novel AAV serotypes for achieving higher levels of transgene expression for applications in gene therapy (7, 12, 36). Xin et al. recently evaluated, in mice, vectors as vaccines for human immunodeficiency virus type 1 (HIV-1) based on the original AAV isolates AAV1 to AAV6 and two novel AAVs we recently discovered, AAV7 and AAV8 (48). They showed significant capsid-dependent effects on T- and B-cell responses to HIV-1 gp160. We recently confirmed these observations and more thoroughly evaluated the quality of the CD8+ T-cell responses (26). AAV vectors of multiple serotypes encoding HIV-1 Gag were injected i.m. into mice, which all showed some level of CD8+ T-cell responses based on tetramer staining and peptide-induced gamma interferon (IFN-γ) expression. However, the quality of AAV-induced, Gag-specific T cells was substantially lower than that obtained with adenoviral vectors, based on several criteria. A majority of the tetramer-positive (Tet+) T cells were nonresponsive to antigen, and those that did respond to antigen produced low levels of IFN-γ and no interleukin-2 (IL-2). Very few memory T cells were generated, and animals primed with AAV vectors were not responsive to a boost with an adenoviral vector. However, all AAV serotypes studied did generate very high levels of antibodies to the Gag transgene product.A final issue to consider in the use of AAV as a genetic vaccine for HIV-1 is the presence of neutralizing antibodies (NAbs) to the vector due to prior AAV infections. We recently conducted an extensive screening of human populations from several continents and found high prevalence and high titers of NAbs to AAV1 and AAV2 and moderate levels of NAbs to AAV7 and -8 (4). In vivo gene transfer experiments indicate that AAV NAbs will likely impinge on vector efficacy (9, 33, 38).This study describes the creation of a novel AAV from rhesus macaque isolates, called AAVrh32.33, and its characterization as a genetic vaccine for HIV-1. AAVrh32.33 has properties unlike those of any others we have studied. We showed that vectors based on this novel capsid elicit strong CD8+ T-cell responses to reporter transgene products that are dependent on CD4+ T-cell help and dependent on signaling through CD40L and CD28 (L. E. Mays and J. M. Wilson, submitted for publication). Important to the use of this vector in the clinic is a very low incidence of NAbs to it in human populations. This study describes the development of vectors based on AAVrh32.33 as genetic vaccines.  相似文献   

7.
Although the adeno-associated virus type 2 (AAV)-based vector system has gained attention as a potentially useful alternative to the more commonly used retroviral and adenoviral vectors for human gene therapy, the single-stranded nature of the viral genome, and consequently the rate-limiting second-strand viral DNA synthesis, significantly affect its transduction efficiency. We have identified a cellular tyrosine phosphoprotein, designated the single-stranded D sequence-binding protein (ssD-BP), which interacts specifically with the D sequence at the 3′ end of the AAV genome and may prevent viral second-strand DNA synthesis in HeLa cells (K. Y. Qing et al., Proc. Natl. Acad. Sci. USA 94:10879–10884, 1997). In the present studies, we examined whether the phosphorylation state of the ssD-BP correlates with the ability of AAV to transduce various established and primary cells in vitro and murine tissues in vivo. The efficiencies of transduction of established human cells by a recombinant AAV vector containing the β-galactosidase reporter gene were 293 > KB > HeLa, which did not correlate with the levels of AAV infectivity. However, the amounts of dephosphorylated ssD-BP which interacted with the minus-strand D probe were also as follows: 293 > KB > HeLa. Predominantly the phosphorylated form of the ssD-BP was detected in cells of the K562 line, a human erythroleukemia cell line, and in CD34+ primary human hematopoietic progenitor cells; consequently, the efficiencies of AAV-mediated transgene expression were significantly lower in these cells. Murine Sca-1+ lin primary hematopoietic stem/progenitor cells contained predominantly the dephosphorylated form of the ssD-BP, and these cells could be efficiently transduced by AAV vectors. Dephosphorylation of the ssD-BP also correlated with expression of the adenovirus E4orf6 protein, known to induce AAV gene expression. A deletion mutation in the E4orf6 gene resulted in a failure to catalyze dephosphorylation of the ssD-BP. Extracts prepared from mouse brain, heart, liver, lung, and skeletal-muscle tissues, all of which are known to be highly permissive for AAV-mediated transgene expression, contained predominantly the dephosphorylated form of the ssD-BP. Thus, the efficiency of transduction by AAV vectors correlates well with the extent of the dephosphorylation state of the ssD-BP in vitro as well as in vivo. These data suggest that further studies on the cellular gene that encodes the ssD-BP may promote the successful use of AAV vectors in human gene therapy.  相似文献   

8.
9.
Vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in the lung; however, we have found that while gene expression can persist for at least 8 months in mice, it was reduced dramatically in rabbits over a period of 2 months. The efficiency and persistence of AAV2-mediated gene expression in the human lung have yet to be determined, but it seems likely that readministration will be necessary over the lifetime of an individual. Unfortunately, we have found that transduction by a second administration of an AAV2 vector is blocked, presumably due to neutralizing antibodies generated in response to the primary vector exposure. Here, we have explored the use of AAV2 vectors pseudotyped with capsid proteins from AAV serotypes 2, 3, and 6 for readministration in the mouse lung. We found that an AAV6 vector transduced airway epithelial and alveolar cells in the lung at rates that were at least as high as those of AAV2 pseudotype vectors, while transduction rates mediated by AAV3 were much lower. AAV6 pseudotype vector transduction was unaffected by prior administration of an AAV2 or AAV3 vector, and transduction by an AAV2 pseudotype vector was unaffected by prior AAV6 vector administration, showing that cross-reactive neutralizing antibodies against AAV2 and AAV6 are not generated in mice. Interestingly, while prior administration of an AAV2 vector completely blocked transduction by a second AAV2 pseudotype vector, prior administration of an AAV6 vector only partially inhibited transduction by a second administration of an AAV6 pseudotype vector. Analysis of sera obtained from mice and humans showed that AAV6 is less immunogenic than AAV2, which helps explain this finding. These results support the development of AAV6 vectors for lung gene therapy both alone and in combination with AAV2 vectors.  相似文献   

10.
11.
Adeno-associated virus (AAV) is being developed as a vector capable of conferring long-term gene expression, which is useful in the treatment of chronic diseases. In most therapeutic applications, it is necessary to readminister the vector. This study characterizes the humoral immune response to AAV capsid proteins following intramuscular injection and its impact on vector readministration. Studies of mice and rhesus monkeys demonstrated the formation of neutralizing antibodies to AAV capsid proteins that persisted for over 1 year and then diminished, but this did not prevent the efficacy of vector readministration. More-detailed studies strongly suggested that the B-cell response was T cell dependent. This was further evaluated with a blocking antibody to human CD4, primatized for clinical trials, in a biologically compatible mouse in which the endogenous murine CD4 gene was functionally replaced with the human counterpart. Transient pharmacologic inhibition of CD4 T cells with CD4 antibody prevented an antivector response long after the effects of the CD4 antibody diminished; readministration of vector without diminution of gene expression was possible. Our studies suggest that truly durable transgene expression (i.e., prolonged genetic engraftment together with vector readministration) is possible with AAV in skeletal muscle, although it will be necessary to transiently inhibit CD4 T-cell function to avoid the activation of memory B cells.  相似文献   

12.
The role of GRP94, an endoplasmic reticulum (ER) stress protein with both pro- and anti-inflammatory functions, has not been investigated in macrophages during ER stress, whereas ER stress has been reported in many diseases involving macrophages. In this work, we studied GRP94 in M1/LPS + IFNγ and M2/IL-4 primary macrophages derived from human monocytes (isolated from buffy coats), in basal and ER stress conditions induced by thapsigargin (Tg), an inducer of ER calcium depletion and tunicamycin (Tm), an inhibitor of N-glycosylation. We found that GRP94 was expressed on the membrane of M2 but not M1 macrophages. In M2, Tg, but not Tm, while decreased GRP94 content in the membrane, it induced its secretion. This correlated with the induction of a pro-inflammatory profile, which was dependent on the UPR IRE1α arm activation and on a functional GRP94. As we previously reported that GRP94 associated with complement C3 at the extracellular level, we analyzed C3 and confirmed GRP94-C3 interaction in our experimental model. Further, Tg increased this interaction and, in these conditions, C3b and cathepsin L were detected in the extracellular medium where GRP94 co-immunoprecipitated with C3 and C3b. Finally, we showed that the C3b inactivated fragment, iC3b, only present on non-stressed M2, depended on functional GRP94, making both GRP94 and iC3b potential markers of M2 cells. In conclusion, our results show that GRP94 is co-secreted with C3 under ER stress conditions which may facilitate its cleavage by cathepsin L, thus contributing to the pro-inflammatory profile observed in stressed M2 macrophages.Subject terms: Immunology, Innate immune cells  相似文献   

13.

Background

Adeno‐associated virus serotype 2 (AAV2) vectors show considerable promise for ocular gene transfer. However, one potential barrier to efficacious long‐term therapy is the development of immune responses against the vector or transgene product.

Methods

We evaluated cellular and humoural responses in mice following both single and repeated subretinal administration of AAV2, and examined their effects on RPE65 and green fluorescent protein transgene expression.

Results

Following subretinal administration of vector, splenocytes and T‐cells from draining lymph nodes showed minimal activation following stimulation by co‐culture with AAV2. Neutralizing antibodies (NAbs) were not detected in the ocular fluids of any mice receiving AAV2 or in the serum of mice receiving a lower dose. NAbs were present in the serum of a proportion of mice receiving a higher dose of the vector. Furthermore, no differences in immunoglobulin titre in serum or ocular fluids against RPE65 protein or AAV2 capsid between treated and control mice were detected. Histological examination showed no evidence of retinal toxicity or leukocyte infiltration compared to uninjected eyes. Repeat administration of low‐dose AAV.hRPE65.hRPE65 to both eyes of RPE65?/? mice resulted in transgene expression and functional rescue, but re‐administration of high‐dose AAV2 resulted in boosted NAb titres and variable transgene expression in the second injected eye.

Conclusions

These data, which were obtained in mice, suggest that, following subretinal injection, immune responses to AAV2 are dose‐dependent. Low‐dose AAV2 is well tolerated in the eye, with minimal immune responses, and transgene expression after repeat administration of vector is achievable. Higher doses lead to the expression of NAbs that reduce the efficacy of repeated vector administration. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

14.
Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.  相似文献   

15.
Baculovirus can transiently transduce primary human and rat hepatocytes, as well as a subset of stable cell lines. To prolong transgene expression, we have developed new hybrid vectors which associate key elements from adeno-associated virus (AAV) with the elevated transducing capacity of baculovirus. The hybrid vectors contain a transgene cassette composed of the β-galactosidase (β-Gal) reporter gene and the hygromycin resistance (Hygr) gene flanked by the AAV inverted terminal repeats (ITRs), which are necessary for AAV replication and integration in the host genome. Constructs were derived both with and without the AAV rep gene under the p5 and p19 promoters cloned in different positions with respect to the baculovirus polyheidrin promoter. A high-titer preparation of baculovirus-AAV (Bac-AAV) chimeric virus containing the ITR–Hygr–β-Gal sequence was obtained with insect cells only when the rep gene was placed in an antisense orientation to the polyheidrin promoter. Infection of 293 cells with Bac-AAV virus expressing the rep gene results in a 10- to 50-fold increase in the number of Hygr stable cell clones. Additionally, rep expression determined the localization of the transgene cassette in the aavs1 site in approximately 41% of cases as detected by both Southern blotting and fluorescent in situ hybridization analysis. Moreover, site-specific integration of the ITR-flanked DNA was also detected by PCR amplification of the ITR-aavs1 junction in transduced human fibroblasts. These data indicate that Bac-AAV hybrid vectors can allow permanent, nontoxic gene delivery of DNA constructs for ex vivo treatment of primary human cells.  相似文献   

16.
A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.  相似文献   

17.
18.
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse.  相似文献   

19.
Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α’-chain (α’NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α’NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.  相似文献   

20.
The efficiency of adenovirus-mediated gene transfer is now well established. However, the cellular and the humoral immune responses triggered by vector injection lead to the rapid elimination of the transduced cells and preclude any efficient readministration. The present investigation focuses on the role of tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, and the related cytokine lymphotoxin α (LTα), in mounting an immune reaction against recombinant adenovirus vectors. After gene transfer in the liver, mice genetically deficient for both cytokines (TNF-α/LTα−/−), in comparison with normal mice, presented a weak acute-phase inflammatory reaction, a reduction in cellular infiltrates in the liver, and a severely impaired T-cell proliferative response to both Adenoviral and transgene product antigens. Moreover, we observed a strong reduction in the humoral response to the vector and the transgene product, with a drastic reduction of anti-adenovirus immunoglobulin A and G antibody isotypes. In addition, the reduction in antibody response observed in TNF-α/LTα−/− and TNF-α/LTα+/− mice versus TNF-α/LTα+/+ mice links antibody levels to TNF-α/LTα gene dosage. Due to the absence of neutralizing antibodies, the TNF-α/LTα knockout mice successfully express a second gene transduced by a second vector injection. The discovery of the pivotal role played by TNF-α in controlling the antibody response against adenovirus will allow more efficient adenovirus-based strategies for gene therapy to be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号