首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The walls of Micrococcus sp. A1contain about 43% of a phosphorylated polymer. It was extracted with cold trichloroacetic acid and purified by chromatography on DEAE-cellulose. 2. The polymer contained equimolar amounts of d-glucose, N-acetylgalactosamine and phosphate, and was readily hydrolysed under gentle acidic conditions to a phosphorylated disaccharide. 3. Chemical and enzymic degradation indicated that this was 3-O-alpha-d-glucopyranosyl-N-acetylgalactosamine with a phosphomonoester group at the 6-position on the glucose. 4. Related degradation of the polymer itself indicated that the repeating structure was the disaccharide with a phosphodiester residue joining the 1-position on galactosamine to the 6-position on glucose in a neighbouring unit. This polymer is thus another example of the increasing number of microbial wall polymers or teichoic acids possessing sugar 1-phosphate linkages.  相似文献   

2.
A polysaccharide-peptidoglycan complex containing different phosphorylated sugars from Micrococcus lysodeikticus cell wall has been isolated and purified. The peptidoglycan contained muramic acid 6-phosphate and N-acetylglucosamine 6-phosphate as phosphorylated sugars in addition to other sugar residues. Mild acid hydrolysis of the peptidoglycan and subsequent reduction of the released polysaccharide showed therein the presence of glucose and N-acetyl-glucosamine in the linkage of the external polysaccharide residues to the peptidoglycan through phosphodiester linkage. These data suggest the presence of polysaccharide chains linked to a peptidoglycan core through two phosphorylated sugars via two different terminal carbohydrate residues of the external polysaccharide chains in a same polymer.  相似文献   

3.
1. Protein-free walls of Micrococcus sp. 2102 contain peptidoglycan, poly-(N-acetylglucosamine 1-phosphate) and small amounts of glycerol phosphate. 2. After destruction of the poly-(N-acetylglucosamine 1-phosphate) with periodate, the glycerol phosphate remains attached to the wall, but can be removed by controlled alkaline hydrolysis. The homogeneous product comprises a chain of three glycerol phosphates and an additional phosphate residue. 3. The poly-(N-acetylglucosamine 1-phosphate) is attached through its terminal phosphate to one end of the tri(glycerol phosphate). 4. The other end of the glycerol phosphate trimer is attached through its terminal phosphate to the 3-or 4-position of an N-acetylglucosamine. It is concluded that the sequence of residues in the sugar 1-phosphate polymer-peptidoglycan complex is: (N-acetylglucosamine 1-phosphate)24-(glycerol phosphate)3-N-acetylglucosamine 1-phosphate-muramic acid (in peptidoglycan). Thus in this organism the phosphorylated wall polymer is attached to the peptidoglycan of the wall through a linkage unit comprising a chain of three glycerol phosphate residues and an N-acetylglucosamine 1-phosphate, similar to or identical with the linkage unit in Staphylococcus aureus H.  相似文献   

4.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

5.
Unsubstituted 1,3-poly(glycerol phosphate) and two sugar-1-phosphate polymers were identified in the cell wall of Brevibacterium linens VKM Ac-2159 by NMR spectroscopy and chemical methods. A monomer of one of the sugar-1-phosphate polymers has the branched repeating unit of the following structure: -4)-[beta-D-GlcpNAc-(1-->3)]-alpha-D-Glcp-(1-P-. The repeating unit of another sugar-1-phosphate polymer has a linear structure consisting of alternating beta- and alpha-N-acetylglucosamine residues: -4)-beta-D-GlcpNAc-(1-->6)-alpha-D-GlcpNAc-(1-P-. Some part of the beta-N-acetylglucosaminyl residues bear O-ester-bound succinic acid residues at C-3. The identified sugar-1-phosphate polymers have not been described earlier in cell walls of other bacteria.  相似文献   

6.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

7.
Anionic polymers of the cell surface of a thermophilic streptomycete were investigated. The cell wall of Streptomyces thermoviolaceus subsp. thermoviolaceus VKM Ac-1857(T) was found to contain polymers with different structure: teichoic acid--1,3-poly(glycerol phosphate), disaccharide-1-phosphate polymer with repeating unit -6)-alpha-Galp-(1-->6)-alpha-GlcpNAc-P-, and polysaccharide without phosphate with repeating unit -->6)-alpha-GalpNAc-(1-->3)-beta-GalpNAc-(1-->. Disaccharide-1-phosphate and polysaccharide without phosphate have not been described earlier in prokaryotic cell walls.  相似文献   

8.
The qualitative and quantitative composition of purified cell walls of Halococcus morrhuae CCM 859 was determined. Glucose, mannose, galactose; glucuronic and galacturonic acids; glucosamine, galactosamine, gulosaminuronic acid; acetate, glycine and sulfate are found as major constituents. The amino sugars are N-acetylated. It was not possible to fractionate the cell wall in chemically different polymers. Evidence is presented that the major cell wall polymer of this strain is a complex heteroglycan which seems, like the peptidoglycan of most bacteria, to be responsible for the rigidity and stability of the cell wall. In addition it could be proved that this heteroglycan is sulfated and therefore differs considerably from previously described bacterial cell wall polymers.  相似文献   

9.
1. The synthesis of a polymer of N-acetylglucosamine 1-phosphate, occurring in the walls of Staphylococcus lactis N.C.T.C. 2102, was examined by using cell-free enzyme preparations. The enzyme system was particulate, and probably represents fragmented cytoplasmic membrane. 2. Uridine diphosphate N-acetylglucosamine was the only substrate required for polymer synthesis and labelled substrate was used to show that N-acetylglucosamine 1-phosphate is transferred as an intact unit from substrate to polymer. 3. The properties of the enzyme system were studied. A high concentration of Mg(2+) or Mn(2+) was required for optimum activity, and the pH optimum was about 8.5. 4. End-group analysis during synthesis in vitro showed that newly formed chains contain up to about 15 repeating units. Pulse-labelling indicated that chain extension occurs by transfer from the nucleotide to the ;sugar-end' of the chain, i.e. to the end that is not attached to peptidoglycan in the wall.  相似文献   

10.
1. After extraction of teichoic acid from cell walls of Bacillus licheniformis with dilute alkali, the insoluble residue contains the teichuronic acid and mucopeptide components and a small amount of residual phosphorus. 2. A complex of teichuronic acid and a part of the mucopeptide was isolated from the soluble fraction obtained by lysozyme treatment of alkali extracted walls. 3. Small-molecular-weight mucopeptide fragments, not containing teichuronic acid, are obtained from the soluble fraction in yields similar to those obtained after treatment of whole walls or acid-extracted walls with lysozyme. 4. The covalent linkages between teichuronic acid and mucopeptide are broken by treatment with dilute acid. The release of teichuronic acid chains is accompanied by the hydrolysis of N-acetylgalactosaminide linkages and the exposed N-acetylgalactosamine residues form chromogen under very mild conditions, indicating that they are substituted on C-3. 5. The initial rate of formation of reactive N-acetylgalactosamine residues during mild acid hydrolysis is parallel to the rate of extraction under the same conditions of teichuronic acid from alkali-treated insoluble walls, and to the rate of acid hydrolysis of glucose 1-phosphate. 6. The results suggest that the teichuronic acid chains are attached through reducing terminals of N-acetylgalactosamine residues to phosphate groups in the mucopeptide. 7. Muramic acid phosphate was isolated from the insoluble mucopeptide remaining after extraction of walls with dilute alkali followed by dilute acid.  相似文献   

11.
Chemostat cultures of Bacillus subtilis subsp. niger WM were exposed to changes in the availability of phosphorus by means of a resuspension technique. Responses in wall metabolism were recorded by measuring the amounts of peptidoglycan and anionic polymers (teichoic or teichuronic acid) in the wall and extracellular fluid fractions. With respect to the wall composition, the effect of a change in orthophosphate supply was a complete shift in the nature of the anionic polymer fraction, the polymer originally present in the walls ("old" polymer) being replaced by the alternative ("new") anionic polymer. The peptidoglycan content of the walls remained constant. It was concluded that the incorporation of old polymer was completely blocked from the moment the orthophosphate supply was changed. However, from a measurement of the total amount of polymer in the whole culture during the course of the experiments, it was evident that synthesis of old polymer continued, but it was secreted. Synthesis of the new polymer started immediately, and it was incorporated exclusively into the wall. During adaption of the cells to the new environment, wall turnover continued in an identical fashion to that extant in steady-state cultures. It was concluded that the primary adaptive response to a change in orthophosphate supply occurred through a mechanism interacting with polymer incorporation and thus at the level of wall assembly at the membrane.  相似文献   

12.
As with other bacteria belonging to the corynebacteria, mycobacteria, and nocardia group, Nocardia possess in their cell walls a neutral polysaccharide. Structural analysis of the cell wall polysaccharide of Nocardia asteroides R 399 was undertaken. The carbohydrate polymer contained D-arabinose and D-galactose as in mycobacteria. Besides these two carbohydrates we pointed out the occurrence of two additional components: D-glucose and a polyol. This polyol, because of its small amount and its uneasy detection, had been for a long time ignored. It has been proven to be the 6-deoxy-D-altritol or 1-deoxy-D-talitol. The polymer consists of a main strand composed of----5 Araf 1----and----4Galp1----or----5Galf1----; oligoarabinosyl side chains were localized on C3 of an arabinosyl residue. Other shorter ramifications also occur on some galactosyl units. A characterization of the linkage between polysaccharide and peptidoglycan inside the cell wall has also been carried out. The two polymers are joined by a phosphodiester bond which involves 6-deoxyaltritol. As some corynebacteria previously analyzed were also shown to contain mannose (and sometimes glucose), we can conclude that the main skeleton of cell wall polysaccharides of the corynebacteria, mycobacteria, and nocardia group of bacteria is an arabinogalactan; however, individual structural features of the polysaccharide are varying according to the bacterial species. These results might be connected with variations that were observed in immunological analysis.  相似文献   

13.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

14.
The outer cyst wall and inclusion material fromBdellovibrio bdellocysts were isolated and their chemical composition was determined. The outer cyst wall is primarily peptidoglycan containing glucosamine, muramic acid, alanine, glutamic acid, and diaminopimelic acid. The cyst walls are resistant to lysozyme, but are rendered sensitive following deacylation and N-acetylation. Isolated inclusions were degraded quantitatively to glucose by HCl and by amyloglucosidase, whereas α-amylase degraded the polymer only partially with the release of reducing groups. The inclusion material is therefore an amylopectin-like polysaccharide, being a polyglucose containing both α-1,4 and α-1,6 linkages.  相似文献   

15.
Bacillus subtilis var. niger was grown in a chemostat with various growth limitations and at various growth rates. The wall content and composition of the organism grown under these conditions were determined. The wall content, expressed as a percentage of the dry weight of organisms, varied with the growth rate. Analysis of wall samples showed that their composition also varied, particularly with respect to the phosphorus content. Wall samples extracted with trichloroacetic acid under carefully controlled conditions were found to contain various amounts of phosphorus, this being present as a glycerol phosphate polymer containing hexose (glucose and in some cases galactose), i.e. a teichoic aid. Teichoic acids were present in the walls of organisms grown under all conditions except when phosphorus limited growth. Then a different anionic polymer, composed of glucuronic acid and N-acetylgalactosamine (a teichuronic acid), was present. Under the specific growth conditions at pH7.0 and 35 degrees C in a chemostat, teichoic acid and teichuronic acid appeared to be mutually exclusive.  相似文献   

16.
Autolysin-defective pneumococci continue to synthesize both peptidoglycan and teichoic acid polymers (Fischer and Tomasz, J. Bacteriol. 157:507-513, 1984). Most of these peptidoglycan polymers are released into the surrounding medium, and a smaller portion becomes attached to the preexisting cell wall. We report here studies on the degree of cross-linking, teichoic acid substitution, and chemical composition of these peptidoglycan polymers and compare them with normal cell walls. peptidoglycan chains released from the penicillin-treated pneumococci contained no attached teichoic acids. The released peptidoglycan was hydrolyzed by M1 muramidase; over 90% of this material adsorbed to vancomycin-Sepharose and behaved like disaccharide-peptide monomers during chromatography, indicating that the released peptidoglycan contained un-cross-linked stem peptides, most of which carried the carboxy-terminal D-alanyl-D-alanine. The N-terminal residue of the released peptidoglycan was alanine, with only a minor contribution from lysine. In addition to the usual stem peptide components of pneumococcal cell walls (alanine, lysine, and glutamic acid), chemical analysis revealed the presence of significant amounts of serine, aspartate, and glycine and a high amount of alanine and glutamate as well. We suggest that these latter amino acids and the excess alanine and glutamate are present as interpeptide bridges. Heterogeneity of these was suggested by the observation that digestion of the released peptidoglycan with the pneumococcal murein hydrolase (amidase) produced peptides that were resolved by ion-exchange chromatography into two distinct peaks; the more highly mobile of these was enriched with glycine and aspartate. The peptidoglycan chains that became attached to the preexisting cell wall in the presence of penicillin contained fewer peptide cross-links and proportionally fewer attached teichoic acids than did their normal counterparts. The normal cell wall was heavily cross-linked, and the cross-linked peptides were distributed equally between the teichoic acid-linked and teichoic acid-free fragments.  相似文献   

17.
1. An enzyme which hydrolyzes the acetamido groups of N-acetylgalactosamine residues in N-acetylated polygalactosamine was found in the supernatant fraction of Aspergillus parasiticus AHU 7165, a polygalactosamine-producing strain. 2. N-Acetylated polygalactosamine was used as a substrate in the purification and characterization of this enzyme. A 140-fold purification was obtained by means of ammonium sulfate fractionation followed by chromatography on carboxymethylcellulose and DEAE-cellulose. 3. The enzyme releases about 60-70% of the acetyl groups of N-acetylated polygalactosamine, giving a product with free amino groups. Whereas the enzyme also deacetylates oligosaccharides with 14 or more N-acetylgalactosamine units at a rate similar to that of deacetylation of the polymer, it deacetylates shorter oligosaccharides (trimer to hexamer of N-acetylgalactosamine) much more slowly and is virtually inactive toward disaccharide. Deacetylation can not be detected with bacterial cell wall peptidoglycan, N-acetylated heparin, partially O-hydroxyethylated chitin or monomeric N-acetylgalactosamine derivatives as substrates. 4. This enzyme shows double pH optima of 5.3 and 9.3. The Km value for N-acetylated poly-galactosamine is 0.15 g/l (or 0.54 mM with respect to monosaccharide residues). 5. The occurrence of this enzyme may account for the formation of polygalactosamine with free amino groups.  相似文献   

18.
Autolysin-defective pneumococci treated with inhibitory concentrations of penicillin and other beta-lactam antibiotics continued to produce non-cross-linked peptidoglycan and cell wall teichoic acid polymers, the majority of which were released into the surrounding medium. The released cell wall polymers were those synthesized by the pneumococci after the addition of the antibiotics. The peptidoglycan and wall teichoic acid chains released were not linked to one another; they could be separated by affinity chromatography on an agarose-linked phosphorylcholine-specific myeloma protein column. Omission of choline, a nutritional requirement and component of the pneumococcal teichoic acid, from the medium inhibited both teichoic acid and peptidoglycan synthesis and release. These observations are discussed in terms of plausible mechanisms for the coordination between the biosynthesis of peptidoglycan and cell wall teichoic acids.  相似文献   

19.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

20.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号