首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

2.

Background

Climate change is increasingly being implicated in species'' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis.

Methods and Findings

The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species'' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species'' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value.

Conclusions

These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.  相似文献   

3.
Southeast‐Asia (SEA) constitutes a global biodiversity hotspot, but is exposed to extensive deforestation and faces numerous threats to its biodiversity. Climate change represents a major challenge to the survival and viability of species, and the potential consequences must be assessed to allow for mitigation. We project the effects of several climate change scenarios on bat diversity, and predict changes in range size for 171 bat species throughout SEA. We predict decreases in species richness in all areas with high species richness (>80 species) at 2050–2080, using bioclimatic IPCC scenarios A2 (a severe scenario, continuously increasing human population size, regional changes in economic growth) and B1 (the ‘greenest’ scenario, global population peaking mid‐century). We also predicted changes in species richness in scenarios that project vegetation changes in addition to climate change up to 2050. At 2050 and 2080, A2 and B1 scenarios incorporating changes in climatic factors predicted that 3–9% species would lose all currently suitable niche space. When considering total extents of species distribution in SEA (including possible range expansions), 2–6% of species may have no suitable niche space in 2050–2080. When potential vegetation and climate changes were combined only 1% of species showed no changes in their predicted ranges by 2050. Although some species are projected to expand ranges, this may be ecologically impossible due to potential barriers to dispersal, especially for species with poor dispersal ability. Only 1–13% of species showed no projected reductions in their current range under bioclimatic scenarios. An effective way to facilitate range shift for dispersal‐limited species is to improve landscape connectivity. If current trends in environmental change continue and species cannot expand their ranges into new areas, then the majority of bat species in SEA may show decreases in range size and increased extinction risk within the next century.  相似文献   

4.

Background

Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.

Methodology/Principal Findings

We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.

Conclusion/Significance

While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.  相似文献   

5.
为模拟、预测气候变化对孑遗、濒危植物蒙古扁桃(Amygdalus mongolica)潜在分布的影响, 利用最大熵(MAXENT)模型模拟、预测、对比、分析、揭示蒙古扁桃在最大冰期(CCSM及MIROC模型)、历史气候(1961-1990年)及未来气候(2020年、2050年和2080年, 政府间气候变化专门委员会排放情景特别报告的A2A情景)条件下的适宜分布范围和空间格局的变化。结果表明: (1)蒙古扁桃在历史气候条件下的潜在分布区集中在蒙古的南戈壁省及东戈壁省, 我国内蒙古巴彦淖尔市、阿拉善左旗、鄂尔多斯市、锡林郭勒盟西部, 河西走廊中部及东部, 宁夏北部及陕西北部, 以及河北北部的部分地区; (2)与历史气候条件下的潜在分布相比, 蒙古扁桃在最大冰期CCSM气候情景下的分布经历了明显的、大范围的向南迁移和范围缩小; (3)未来A2A气候情景下, 其潜在分布范围表现出在2020年明显扩大, 在2050年减小, 到2080年又略有增大的趋势。分布格局表现出不断向我国河北及内蒙古东部, 蒙古东部、北部及西部大幅度扩散、迁移的趋势。  相似文献   

6.
《植物生态学报》2014,38(3):262
为模拟、预测气候变化对孑遗、濒危植物蒙古扁桃(Amygdalus mongolica)潜在分布的影响, 利用最大熵(MAXENT)模型模拟、预测、对比、分析、揭示蒙古扁桃在最大冰期(CCSM及MIROC模型)、历史气候(1961-1990年)及未来气候(2020年、2050年和2080年, 政府间气候变化专门委员会排放情景特别报告的A2A情景)条件下的适宜分布范围和空间格局的变化。结果表明: (1)蒙古扁桃在历史气候条件下的潜在分布区集中在蒙古的南戈壁省及东戈壁省, 我国内蒙古巴彦淖尔市、阿拉善左旗、鄂尔多斯市、锡林郭勒盟西部, 河西走廊中部及东部, 宁夏北部及陕西北部, 以及河北北部的部分地区; (2)与历史气候条件下的潜在分布相比, 蒙古扁桃在最大冰期CCSM气候情景下的分布经历了明显的、大范围的向南迁移和范围缩小; (3)未来A2A气候情景下, 其潜在分布范围表现出在2020年明显扩大, 在2050年减小, 到2080年又略有增大的趋势。分布格局表现出不断向我国河北及内蒙古东部, 蒙古东部、北部及西部大幅度扩散、迁移的趋势。  相似文献   

7.
Chung U  Mack L  Yun JI  Kim SH 《PloS one》2011,6(11):e27439
Cherry blossoms, an icon of spring, are celebrated in many cultures of the temperate region. For its sensitivity to winter and early spring temperatures, the timing of cherry blossoms is an ideal indicator of the impacts of climate change on tree phenology. Here, we applied a process-based phenology model for temperate deciduous trees to predict peak bloom dates (PBD) of flowering cherry trees (Prunus×yedoensis ‘Yoshino’ and Prunus serrulata ‘Kwanzan’) in the Tidal Basin, Washington, DC and the surrounding Mid-Atlantic States in response to climate change. We parameterized the model with observed PBD data from 1991 to 2010. The calibrated model was tested against independent datasets of the past PBD data from 1951 to 1970 in the Tidal Basin and more recent PBD data from other locations (e.g., Seattle, WA). The model performance against these independent data was satisfactory (Yoshino: r2 = 0.57, RMSE = 6.6 days, bias = 0.9 days and Kwanzan: r2 = 0.76, RMSE = 5.5 days, bias = −2.0 days). We then applied the model to forecast future PBD for the region using downscaled climate projections based on IPCC''s A1B and A2 emissions scenarios. Our results indicate that PBD at the Tidal Basin are likely to be accelerated by an average of five days by 2050 s and 10 days by 2080 s for these cultivars under a mid-range (A1B) emissions scenario projected by ECHAM5 general circulation model. The acceleration is likely to be much greater (13 days for 2050 s and 29 days for 2080s ) under a higher (A2) emissions scenario projected by CGCM2 general circulation model. Our results demonstrate the potential impacts of climate change on the timing of cherry blossoms and illustrate the utility of a simple process-based phenology model for developing adaptation strategies to climate change in horticulture, conservation planning, restoration and other related disciplines.  相似文献   

8.
Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang‐utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil‐palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land‐cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm – a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260 000 km2 of Borneo was suitable habitat within the core orang‐utan range; an 18–24% reduction since the 1950s. Land‐cover models predicted further decline of 15–30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north‐eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land‐cover change. Refuge areas amounted to 2000–42 000 km2 depending on thresholds used, with 900–17 000 km2 outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang‐utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.  相似文献   

9.
In a spatially explicit climate change impact assessment, a Bayesian network (BN) model was implemented to probabilistically simulate future response of the four major vegetation types in Swaziland. Two emission scenarios (A2 and B2) from an ensemble of three statistically downscaled coupled atmosphere‐ocean global circulation models (CSIRO‐Mk3, CCCma‐CGCM3 and UKMO‐HadCM3) were used to simulate possible changes in BN‐based environmental envelopes of major vegetation communities. Both physiographic and climatic data were used as predictors representing the 2020s, 2050s and the 2080s periods. A comparison of simulated vegetation distribution and the expert vegetation map under baseline conditions showed an overall correspondence of 97.7% and a Kappa coefficient of 0.966. Although the ensemble projections showed comparable trends during the 2020s, the results from the A2 storyline were more drastic indicating that grassland and the Lebombo bushveld will be impacted negatively as early as the 2020s with about 1 °C temperature increase. The bioclimatically suitable areas of all but one vegetation type decline drastically after about 2 °C warming, more so under the more severe A2 scenario and in particular during the 2080s. The sour bushveld is the only vegetation type that initially responds positively to warming by possibly encroaching to the highly vulnerable grassland areas. Vulnerability of vegetation is increased by the limited ability to migrate into suitable climates due to close affinity to certain geological formations and the fragmentation of the landscape by agriculture and other land uses. This is expected to have serious impacts on biodiversity in the country. Under warmer climates, the likely vegetation types to emerge are uncertain due to future novel combinations of climate and bedrock lithology. The strengths and limitations of the BN approach are also discussed.  相似文献   

10.
The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020s, 2050s, and 2080s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020s, 2050s, and 2080s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961–1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time.  相似文献   

11.
Climate change threatens not only plant species occurring naturally, but also impacts on regional living plant collections, which play an important role in ex situ conservation strategies. In the last few years, several global circulation models have been used to predict different global climate change scenarios. Due to their coarse resolutions, and while more detailed regional approaches are not available, downscaling techniques have been proposed, as a very simple first approach to increase detail. We analysed seven sites on mainland Portugal with potential for species conservation (four botanic gardens and three universities), in the light of downscaled climate change scenarios, using an environmental envelope approach and a predefined bioclimatic neighbourhood for each site. Thresholds for the bioclimatic neighbourhood were based on Rivas-Martínez’s Bioclimatic Classification of the Earth. For each site, the expected geographical shift of its original bioclimatic neighbourhood (1950–2000) was mapped for 2020, 2050 and 2080. Analysing those shifts enabled us to delineate knowledge-transfer paths between sites, according to the analysed scenarios. We concluded that, according to the Intergovernmental Panel on Climate Change A2 scenario, all considered sites will be outside the predefined bioclimatic neighbourhood by 2080, while according to the B2 scenario all of them will be inside that neighbourhood, although sometimes marginally so. Therefore, the implementation of global sustainability measures as considered in the B2 scenario family can be of great importance in order to delay significantly the impacts of climate change, giving extra time for the adaptation of the outdoor regional living plant collections.  相似文献   

12.
Climate change will ultimately affect the supply and quality of freshwater lakes and rivers throughout the world. This study examines the potential impacts of climate change on freshwater fish distributions in Canada. Climate normals data (means from 1961 to 1990) from Environment Canada were used to map current climate found throughout the tertiary watersheds of Canada. Logistic regressions based on these climate data were used to develop predictive presence‐absence equations for (a) common commercially and recreationally important species and (b) an Arctic freshwater species and a freshwater fish species of conservation significance listed by the Committee on the Status of Endangered Wildlife (COSEWIC). The Canadian Centre for Climate Modelling and Analysis Global Coupled Model 2(IS92a) provided forecasts of Canada's climate in 2020 and 2050. The data from this scenario and the logistic regressions provided a ready framework for predicting the potential distributions of the fishes. Physical and ecological barriers would have to be overcome for the distribution of these species to actually change in response to climate change. Generally, coldwater species may be extirpated from much of their present range while cool and warm‐water species may expand northward. Species that are limited to the most southern regions of the country may expand northwards. A conceptual framework for assessing potential climate change impacts on fishes and the variety of management strategies required to deal with these impacts are discussed. Our forecasts demonstrate the need for climate change assessments in species at risk as well as for common species.  相似文献   

13.
Global warming, a consequence of climate change, alters rice-paddy ecosystems, especially through the changes of both growth rate of plants and the occurrences of pests, and affects both rice crop production and biodiversity. In this study, factors related to the germination temperatures of 80 weed species in paddy fields were analyzed to elucidate the effect of warming on morphological (leaf size), phenological (germination time), and population (distribution) responses. A self-organizing map (SOM) was used to classify the weed species on the basis of 5 factors related to germination temperature: the minimum, maximum, and optimum temperatures and the minimum and maximum optimal range. Climate data for the Korean Peninsula during 4 different decades (1990s, 2020s, 2050s, and 2080s) were obtained from a regional climate change model following the A1B emission scenario of the Intergovernmental Panel on Climate Change. Changes in the germination time and range of potential habitable areas for the weed species were estimated on the basis of the patterns of the SOM. The species associated with relatively lower germination temperatures tended to have smaller leaves, shorter stems, and earlier flowering and germination times than the species associated with higher germination temperature. The potential germination area increased progressively with rising temperature. The degree of potential increase in germination area was the greatest in the 2080s when the weeds could germinate in most of the southern Korean Peninsula. These results suggest that studying the patterns of germination temperature through SOM could provide necessary information for characterizing the germination of weeds on the basis of various characteristics (e.g., morphology, phenology, and distribution) and would be useful for maintaining agricultural productivity and agroecosystem biodiversity under global warming.  相似文献   

14.
Endemic species and ecosystem sensitivity to climate change in Namibia   总被引:1,自引:0,他引:1  
We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ~2050 and ~2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ~2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ~2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.  相似文献   

15.
16.
India is one of the 12 mega biodiversity countries of the world, which represents 11% of world''s flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.  相似文献   

17.
A simple approach is suggested to project potential changes in the diversity of vascular plants. We use the current (recent past) relationship between plant diversity and geographic variation in the climate, as well as elevation range, to project changes in regional species richness (at 100 × 100 km resolution), concentrating on six climate scenarios for 2020, 2050 and 2080. The results show an overall trend towards increased vascular plant species richness. Increases in richness by 2050 and 2080 are expected over approximately three-quarters of the land surface, but decreases are expected in other regions. The magnitudes of richness gains and losses both increase over time, as the level of warming grows. The latitudinal pattern of change suggests that richness increases will be greatest at high latitudes, where plant productivity and diversity are largely limited by temperature. Richness decreases are not projected consistently in any latitudinal band, but are most likely to be observed at 5–40ºN, where declines in precipitation drive most projected decreases in richness.  相似文献   

18.
Climate change may dramatically affect the distribution and abundance of organisms. With the world's population size expected to increase significantly during the next 100 years, we need to know how climate change might impact our food production systems. In particular, we need estimates of how future climate might alter the distribution of agricultural pests. We used the climate projections from two general circulation models (GCMs) of global climate, the Canadian Centre for Climate Modelling and Analysis GCM (CGCM2) and the Hadley Centre model (HadCM3), for the A2 and B2 scenarios from the Special Report on Emissions Scenarios in conjunction with a previously published bioclimatic envelope model (BEM) to predict the potential changes in distribution and abundance of the swede midge, Contarinia nasturtii, in North America. The BEM in conjunction with either GCM predicted that C. nasturtii would spread from its current initial invasion in southern Ontario and northwestern New York State into the Canadian prairies, northern Canada, and midwestern United States, but the magnitude of risk depended strongly on the GCM and the scenario used. When the CGCM2 projections were used, the BEM predicted an extensive shift in the location of the midges' climatic envelope through most of Ontario, Quebec, and the maritime and prairie provinces by the 2080s. In the United States, C. nasturtii was predicted to spread to all the Great Lake states, into midwestern states as far south as Colorado, and west into Washington State. When the HadCM3 was applied, southern Ontario, Saskatchewan, and Washington State were not as favourable for C. nasturtii by the 2080s. Indeed, when used with the HadCM3 climate projections, the BEM predicted the virtual disappearance of ‘very favourable’ regions for C. nasturtii. The CGCM2 projections generally caused the BEM to predict a small increase in the mean number of midge generations throughout the course of the century, whereas, the HadCM3 projections resulted in roughly the same mean number of generations but decreased variance. Predictions of the likely potential of C. nasturtii spatial spread are thus strongly dependent on the source of climate projections. This study illustrates the importance of using multiple GCMs in combination with multiple scenarios when studying the potential for spatial spread of an organism in response to climate change.  相似文献   

19.
There is now ample evidence of the effects of anthropogenic climate change on the distribution and abundance of species. The black-faced spoonbill (Platalea minor) is an endangered migratory species and endemic to East Asia. Using a maximum entropy approach, we predicted the potential wintering distribution for spoonbills and modeled the effects of future climate change. Elevation, human influence index and precipitation during the coldest quarter contributed most to model development. Five regions, including western Taiwan, scattered locations from eastern coastal to central mainland China, coastal areas surrounding the South China Sea, northeastern coastal areas of Vietnam and sites along the coast of Japan, were found to have a high probability of presence and showed good agreement with historical records. Assuming no limits to the spread of this species, the wintering range is predicted to increase somewhat under a changing climate. However, three currently highly suitable regions (northeastern Vietnam, Taiwan and coastal areas surrounding the South China Sea) may face strong reductions in range by 2080. We also found that the center of the predicted range of spoonbills will undergo a latitudinal shift northwards by as much as 240, 450, and 600 km by 2020, 2050 and 2080, respectively. Our findings suggest that species distribution modeling can inform the current and future management of the black-faced spoonbill throughout Asia. It is clear that a strong international strategy is needed to conserve spoonbill populations under a changing climate.  相似文献   

20.
《植物生态学报》2014,38(3):249
桃儿七(Sinopodophyllum hexandrum)为小檗科多年生草本植物, 是我国濒危传统藏药, 预测气候变化对该物种分布范围的影响对于其保护和资源可持续利用具有重要意义。该文利用获得的桃儿七136个地理分布记录和21个气候环境图层, 通过MaxEnt模型分析桃儿七在我国西部七省的潜在地理分布, 并基于该模型预测政府间气候变化专门委员会(IPCC)发布的SRES-A1B、SRES-A2和SRES-B1气候情景下21世纪20、50和80年代桃儿七分布范围。结果表明: 最热季平均温度、年降水量、温度季节性变动系数和等温性是影响桃儿七分布的主要气候因子; 在当前气候条件下, 桃儿七适宜的生境面积占研究区总面积的11.71%, 主要集中在青藏高原东缘的四川、甘肃、青海境内次生植被丰富、地形复杂的高海拔地区, 低适宜生境与不适宜生境分别占研究区总面积的15.86%与72.43%。由模型预测可知, 在SRES-A1B、SRES-A2和SRES-B1三种情景下, 桃儿七在研究区低适宜生境的数量相对变化较小, 在适宜生境先大幅减少后又缓慢增加。研究结果同时表明, 在未来气候变化条件下, 桃儿七的适宜生境平均海拔将逐渐升高, 范围以及几何重心极有可能先向北移, 然后再向西延伸至青藏高原内部较高海拔的山区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号