首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in photochemical efficiency, non-radiative energy dissipation (NRD), de-epoxidation state of xanthophyll cycle components (DPS) and contents of the antioxidants ascorbic acid and glutathione were studied in leaves of the poikilohydric Ramonda serbica Panc. (Gesneriaceae) during cycles of dehydration and subsequent rehydration. In drying leaves, the intrinsic efficiency of PS II photochemistry and the photon yield of PS II electron transport showed strong progressive decreases. Simultaneously, the fraction of excitation energy dissipated as heat in the PS II antenna increased markedly. The energy-dependent component of non-photochemical quenching (NPQ) showed an increase in dehydrating leaves down to relative water contents (RWC) values near 30%. Further decreases in RWC below these values caused a decrease in NPQ. Accordingly, DPS showed a similar behaviour, with a sharp increase and a subsequent decrease at very low RWC, although the maximum DPS was reached at slightly lower RWC than that for the maximum NPQ. The pools of reduced ascorbate and glutathione increased strongly when the RWC values fell below 40% and remained high in fully dehydrated leaves. When plants were re-watered photosynthetic efficiency, NRD, DPS and antioxidant contents recovered their initial control values. However, during rehydration, the zeaxanthin content showed a transient increase, as did NPQ, indicating an increasing demand for non-radiative dissipation. On the other hand, the contents of reduced ascorbate and reduced glutathione decreased but were still relatively high in the initial phase of rehydration, when the rate of photosynthetic electron transport, proton pumping and NRD were still relatively low. These results indicate that several photoprotective mechanisms are operating in R. serbica. Protection from photo-oxidation and photoinhibition appears to be achieved by co-ordinated contributions by ascorbate, glutathione and zeaxanthin-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring desiccation-tolerance.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
Xu  C.-C.  Lin  R.-C.  Li  L.-B.  Kuang  T.-Y. 《Photosynthetica》2000,38(2):221-226
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity.  相似文献   

3.
Diurnal patterns of photosynthesis were studied in July and April populations of Cladophora glomerata (L.) Kütz. from open and from shaded sites. Summer samples exposed to full sunlight showed decreased efficiency of open photosystem II at noon, and only slight differences were found between samples that had grown at open or at shaded sites. Electron transport rate was limited at highest fluence rates in shade plants, and non‐photochemical quenching (NPQ) revealed faster regulation in samples from open sites. Daily course of de‐epoxidation was not linearly correlated with the course of NPQ. The comparison of samples from open and from shaded sites revealed a higher capacity of thermal energy dissipation and an increase in the total amount of xanthophyll‐cycle pigments (21%) in samples from open sites. In April, down‐regulation of the efficiency of open photosystem II was related to lower water temperature, and hence, increased excitation pressure. In April the pool size of xanthophyll‐cycle pigments was increased by 21% in comparison with summer and suggested higher levels of thermal energy dissipation via de‐epoxidized xanthophylls. In both, summer and spring the amount of xanthophyll‐cycle pigments was 20% higher in samples from open sites. Acclimation of C. glomerata to growth light conditions was further shown by experimental induction of NPQ, indicating NPQ increases of 23%, and increases of 77% in the reversible component of NPQ in open site samples. The effect of temperature on photosynthetic rate was non‐linear, and different optimum temperatures of electron transport rate and oxygen evolution were exhibited.  相似文献   

4.
Chen LS  Qi YP  Liu XH 《Annals of botany》2005,96(1):35-41
* BACKGROUND AND AIMS: Under high photon flux, excitation energy may be in excess in aluminum (Al)-treated leaves, which use a smaller fraction of the absorbed light in electron transport due to decreased CO2 assimilation compared with normal leaves. The objectives of this study were to test the hypothesis that the antioxidant systems are up-regulated in Al-treated citrus leaves and correlate with protection from photoxidative damage, and to test whether xanthophyll cycle-dependent thermal energy dissipation is involved in dissipating excess excitation energy. * METHODS: 'Cleopatra' tangerine seedlings were fertilized and irrigated daily for 8 weeks with quarter-strength Hoagland's nutrient solution containing Al at a concentration of 0 or 2 mM from Al2(SO4)3.18H2O. Thereafter, leaf absorptance, chlorophyll (Chl) fluorescence, Al, pigments, antioxidant enzymes and metabolites were measured on fully expanded leaves. * KEY RESULTS: Compared with control leaves, energy was in excess in Al-treated leaves, which had smaller thermal energy dissipation, indicated by non-photochemical quenching (NPQ). In contrast, conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at midday increased in both treatments, but especially in Al-treated leaves, although A + Z accounted for less 40 % of the total xanthophyll cycle pool in them. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and concentrations of ascorbate (AsA), dehydroascorbate (DASA), reduced glutathione (GSH) and oxidized glutathione (GSSG) were higher in Al-treated than in control leaves. * CONCLUSIONS: These results corroborate the hypothesis that, compared with control leaves, antioxidant systems are up-regulated in Al-treated citrus leaves and protect from photoxidative damage, whereas thermal energy dissipation was decreased. Thus, antioxidant systems are more important than thermal energy dissipation in dissipating excess excitation energy in Al-treated citrus leaves.  相似文献   

5.
The formation of calcium‐containing structures on the thallial surface of the lichen Ramalina lacera (With.) J.R. Laund. in response to air pollution and to simulated acid rain, was studied in in situ and transplanted thalli. In situ thalli were collected from an unpolluted site and transplanted to heavily polluted and less polluted sites for a 10 month period. Additional thalli were treated either with double distilled water or with simulated acid rain. Scanning electron microscopy and infrared spectrometry revealed that thallial surfaces of in situ R. lacera samples collected in unpolluted sites were covered with two kinds of calcium oxalate crystals: whewellite and weddellite. These aggregates of calcium oxalate crystals appear to disintegrate and provide a crystal layer on the thallial surface. Infrared spectroscopy of powder scraped from thallial surfaces of transplants, retrieved from non‐polluted sites, showed the presence of whewellite and weddellite, whereas powders obtained from thalli retrieved from polluted sites contained whewellite, weddellite and gypsum. It is suggested that a certain fraction of the gypsum detected in crater‐like structures in transplants from polluted sites and in thalli treated with simulated acid rain is endogenous and should be considered a biomineral.  相似文献   

6.
阳成伟  陈贻竹 《广西植物》2002,22(3):264-267
依赖叶黄素循环的热耗散是一种主要防御光破坏的机制。参与叶黄素循环的酶是紫黄质脱环氧化酶和玉米黄质环氧化酶 ,紫黄质脱环氧化酶已分离纯化 ,其 c DNA已被克隆 ,其活性主要受跨类囊体膜的 p H梯度和抗坏血酸浓度的调节 ;玉米黄质环氧化酶还没有被分离出来 ,但其 c DNA也已被克隆 ;其活性主要与NADPH的浓度、O2 及光等有关。  相似文献   

7.
The involvement of the xanthophyll cycle in photoprotection of N-deficient spinach (Spinacia oleracea L. cv Nobel) was investigated. Spinach plants were fertilized with 14 mM nitrate (control, high N) versus 0.5 mM (low N) fertilizer, and grown under both high- and low-light conditions. Plants were characterized from measurements of photosynthetic oxygen exchange and chlorophyll fluorescence, as well as carotenoid and cholorophyll analysis. Compared with the high-N plants, the low-N plants showed a lower capacity for photosynthesis and a lower chlorophyll content, as well as a lower rate of photosystem II photosynthetic electron transport and a corresponding increase in thermal energy dissipation activity measured as nonphotochemical fluorescence quenching. The low-N plants displayed a greater fraction of the total xanthophyll cycle pool as zeaxanthin and antheraxanthin at midday, and an increase in the ratio of xanthophyll cycle pigments to total chlorophyll. These results indicate that under N limitation both the light-collecting system and the photosynthetic rate decrease. However, the increased dissipation of excess energy shows that there is excess light absorbed at midday. We conclude that spinach responds to N limitation by a combination of decreased light collection and increased thermal dissipation involving the xanthophyll cycle.  相似文献   

8.
The relationships between photosynthetic efficiency, non-radiative energy dissipation and carotenoid composition were studied in leaves ofLigustrum ovalifolium developed either under full sunlight or in the shade. Sun leaves contained a much greater pool of xanthophyll cycle components than shade leaves. The rate of non-radiative energy dissipation, measured as non-photochemical fluorescence quenching (NPQ), was strictly related to the deepoxidation state (DPS) of xanthophyll cycle components in both sun and shade leaves, indicating that zeaxanthin (Z) and antheraxanthin (A) are involved in the development of NPQ. Under extreme conditions of excessive energy, sun leaves showed higher maximum DPS than shade leaves. Therefore, sun leaves contained not only a greater pool of xanthophyll cycle components but also a higher proportion of violaxanthin (V) actually photoconvertible to A and Z, compared to shade leaves. Both these effects contributed to the higher NPQ in sun versus shade leaves. The amount of photoconvertible V was strongly related to chla/b ratio and inversely to leaf neoxanthin content. This evidence indicates that the amount of photoconvertible V may be dependent on the degree of thylakoid membrane appression and on the organization of chlorophyll-protein complexes, and possible explanations are discussed. Exposure to chilling temperatures caused a strong decline in the photon yield of photosynthesis and in the intrinsic efficiency of PS II photochemistry in sun leaves, but little effects in shade leaves. These effects were accompanied by increases in the pool of xanthophyll cycle components and in DPS, more pronounced in sun than in shade leaves. This corroborates the view that Z and A may play a photoprotective role under unfavorable conditions. In addition to the xanthophyll-related non-radiative energy dissipation, a slow relaxing component of NPQ, independent from A and Z concentrations, has been found in leaves exposed to low temperature and high light. This quenching component may be attributed either to other regulatory mechanism of PS II efficiency or to photoinactivation.Research supported by National Research Council of Italy, Special Project RAISA, Sub-Project 2, Paper N. 1587.  相似文献   

9.
The influence of low temperature on the operation of the xanthophyll cycle and energy dissipation activity, as ascertained through measurements of chlorophyll fluorescence, was examined in two broad-leaved evergreen species, Vinca minor L. and Euonymus kiautschovicus Loessner. In leaves examined under laboratory conditions, energy dissipation activity developed more slowly at lower leaf temperatures, but the final, steady-state level of such activity was greater at lower temperatures where the rate of energy utilization (through photosynthetic electron transport) was much lower. The rate at which energy dissipation activity increased was similar to that of the de-epoxidation of violaxanthin to antheraxanthin and zea-xanthin at different temperatures. However, leaves in the field examined prior to sunrise on mornings following cold days and nights exhibited a retention of antheraxanthin and zeaxanthin that was associated with sustained decreases in photosystem II efficiency. We therefore suggest that this phenomenon of ‘photoinhibition’ in response to light and cold temperatures during the winter results from sustained photoprotective thermal energy dissipation associated with the xanthophyll cycle. Such retention of the de-epoxidized components of the xanthophyll cycle responded to day-to-day changes in temperature, being greatest on the coldest mornings (when photoprotective energy dissipation might be most required) and less on warmer mornings when photosynthesis could presumably proceed at higher rates.  相似文献   

10.
We examined differences between summer and winter in xanthophyll cycle-dependent energy dissipation and leaf antioxidant systems in needles of the overwintering evergreen Taxus x media cv. Tauntonii (Taunton yew) growing in both sun and shade environments in Saint Paul, Minnesota. During the winter, both sun and shade plants exhibited increases in the capacity for, and utilization of, xanthophyll cycle-dependent thermal energy dissipation. Winter needles showed decreases (sun needles) or no change (shade needles) in superoxide dismutase activity (EC 1.15.1.1), no change in ascorbate peroxidase activity (EC 1.11.1.11) and no change (sun needles) or increases (shade needles) in reduced ascorbate levels. Both sun and shade needles showed large increases in glutathione reductase activity (EC 1.6.4.2) and total glutathione levels during the winter, in addition to increases in levels of α-tocopherol. These results suggest an important photoprotective role during the winter for xanthophyll cycle-dependent energy dissipation and for the antioxidants glutathione and α-tocopherol. They suggest a less important photoprotective function of the enzyme-based water–water cycle in winter acclimation in the seasonally very cold environment of Minnesota.  相似文献   

11.
The acclimation of photochemistry, xanthophyll cycle-dependent energy dissipation, and antioxidants was characterized in leaves of Cucurbita pepo L. and Vinca major L. that developed under photosynthetic photon flux densities (PPFDs) ranging from deep shade to full sunlight in the field. The predominant acclimatory response of leaf pigment composition was an increase in the xanthophyll cycle pool size with increasing growth PPFD. In both species, the estimated rate of thermal energy dissipation at midday increased with increasing PPFD and midday levels of zeaxanthin and antheraxanthin per chlorophyll were closely correlated with the levels of non-photochemical fluorescence quenching under all growth PPFD regimes. However, at full sunlight there appeared to be considerably higher levels of xanthophyll cycle dependent energy dissipation in V. major compared with pumpkin while estimated rates of photochemistry exhibited the reverse trend. Leaf activities of the antioxidant enzymes ascorbate peroxidase and superoxide dismutase, as well as ascorbate content, increased with increasing growth PPFD in both plant species. Activities/contents were higher under 100% full sunlight and increased more strongly from intermediate growth PPFDs to 100% full sunlight in V. major than in C. pepo. These patterns of acclimation are similar to those exhibited by xanthophyll cycle-dependent energy dissipation. The patterns of acclimation of glutathione reductase are discussed in the context of the multiple roles for reduced glutathione. Catalase acclimated in a manner consistent with its role in scavenging H2O2 generated via photorespiration and/or mitochondrial respiration. Leaf -tocopherol did not exhibit growth PPFD-dependent trends.  相似文献   

12.
We investigated differences between summer and winter in photosynthesis, xanthophyll cycle-dependent energy dissipation, and antioxidant systems in populations of Mahonia repens (Lindley) Don growing in the eastern foothills of the Colorado Rocky Mountains in deep shade, full exposure, and under a single-layered canopy of Pinus ponderosa (partially shaded). In summer, increasing growth irradiance (from deep shade to partial shade to full exposure) was associated with increased xanthophyll cycle-dependent energy dissipation in PSII and an increased capacity to detoxify reactive reduced oxygen species, as measured by increases in the activities of ascorbate peroxidase, superoxide scavenging, glutathione reductase, and monodehydroascorbate reductase, as well as increases in leaf ascorbate and glutathione content. Leaves of exposed and partially shaded plants exhibited decreased capacities for photosynthetic O2 evolution in winter compared to summer, while in the deeply shaded plants this parameter did not differ seasonally. Seasonal differences in the levels of antioxidants generally exhibited an inverse response to photosynthesis, being higher in winter compared to summer in the exposed and partially shaded populations, but remaining unchanged in the deeply shaded population. In addition, total pool size and conversion state of the xanthophyll cycle were higher in winter than in summer in all populations. These trends suggest that both xanthophyll cycle-dependent energy dissipation in PSII and the capacity to detoxify reactive reduced oxygen species responded to the level of excess light absorption. Received: 23 October 1997 / Accepted: 23 March 1998  相似文献   

13.
Characteristics of Photosynthetic Apparatus in Mn-Starved Maize Leaves   总被引:3,自引:0,他引:3  
Jiang  C.-D.  Gao  H.-Y.  Zou  Q. 《Photosynthetica》2002,40(2):209-213
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (P N) compared to control leaves. The loss of P N was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the high-energy fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient.  相似文献   

14.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

15.
刘建新  王鑫  王瑞娟  李东波 《生态学杂志》2010,21(11):2836-2842
研究了150 mmol·L-1NaHCO3胁迫下,不同浓度硝酸镧对黑麦草幼苗光合作用、叶绿素荧光参数、Mehler反应,以及叶黄素循环的影响.结果表明:低浓度硝酸镧(0.05 mmol·L-1)叶面喷施处理能显著减小NaHCO3胁迫下黑麦草叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、气孔限制值(Ls)的下降幅度和胞间CO2浓度(Ci) 的上升幅度,有效缓解NaHCO3胁迫对叶片PSⅡ光化学猝灭(qP)、实际光化学效率(ΦPSⅡ)、依赖光合碳同化电子传递(ETRp)和依赖Mehler反应电子传递(ETRm) 的抑制,增强黑麦草叶片中超氧化物歧化酶、过氧化物酶和抗坏血酸过氧化物酶的活性,提高非光化学能量耗散(NPQ)、叶黄素循环库(V+A+Z)和脱环氧化程度(A+Z)/(V+A+Z),从而减轻NaHCO3胁迫对光合机构的伤害;但高浓度硝酸镧(0.5 mmol·L-1)对NaHCO3胁迫伤害的缓解效果不明显.表明适宜浓度的硝酸镧能够缓解NaHCO3胁迫下非气孔因素引起的黑麦草叶片光合速率下降以及对光化学效率的抑制,并通过促进Mehler反应直接耗散过剩激发能和激活依赖叶黄素循环的热耗散,保护NaHCO3胁迫引起的过剩光能对光合机构造成的伤害,而Mehler反应加强所产生的活性氧可被抗氧化酶活性的提高所清除.  相似文献   

16.
NaHCO3胁迫下硝酸镧对黑麦草幼苗光合机构的保护作用   总被引:4,自引:0,他引:4  
研究了150 mmol·L-1NaHCO3胁迫下,不同浓度硝酸镧对黑麦草幼苗光合作用、叶绿素荧光参数、Mehler反应,以及叶黄素循环的影响.结果表明:低浓度硝酸镧(0.05 mmol·L-1)叶面喷施处理能显著减小NaHCO3胁迫下黑麦草叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、气孔限制值(Ls)的下降幅度和胞间CO2浓度(Ci) 的上升幅度,有效缓解NaHCO3胁迫对叶片PSⅡ光化学猝灭(qP)、实际光化学效率(ΦPSⅡ)、依赖光合碳同化电子传递(ETRp)和依赖Mehler反应电子传递(ETRm) 的抑制,增强黑麦草叶片中超氧化物歧化酶、过氧化物酶和抗坏血酸过氧化物酶的活性,提高非光化学能量耗散(NPQ)、叶黄素循环库(V+A+Z)和脱环氧化程度(A+Z)/(V+A+Z),从而减轻NaHCO3胁迫对光合机构的伤害;但高浓度硝酸镧(0.5 mmol·L-1)对NaHCO3胁迫伤害的缓解效果不明显.表明适宜浓度的硝酸镧能够缓解NaHCO3胁迫下非气孔因素引起的黑麦草叶片光合速率下降以及对光化学效率的抑制,并通过促进Mehler反应直接耗散过剩激发能和激活依赖叶黄素循环的热耗散,保护NaHCO3胁迫引起的过剩光能对光合机构造成的伤害,而Mehler反应加强所产生的活性氧可被抗氧化酶活性的提高所清除.  相似文献   

17.
Grace SC  Logan BA 《Plant physiology》1996,112(4):1631-1640
The protective role of leaf antioxidant systems in the mechanism of plant acclimation to growth irradiance was studied in Vinca major, Schefflera arboricola, and Mahonia repens, which were grown for several months at 20, 100, and 1200 [mu]mol photons m-2 s-1. As growth irradiance increased, several constituents of the "Mehler-peroxidase" pathway also increased: superoxide dismutase, ascorbate peroxidase, glutathione reductase, ascorbate, and glutathione. This occurred concomitantly with increases in the xanthophyll cycle pool size and in the rate of nonphotochemical energy dissipation under steady-state conditions. There was no evidence for photosystem II overreduction in plants grown at high irradiance, although the reduction state of the stromal NADP pool, estimated from measurements of NADP-malate dehydrogenase activity, was greater than 60% in V. major and S. arboricola. Ascorbate, which removes reactive O2 species generated by O2 photoreduction in the chloroplast and serves as a reductant for the conversion of the xanthophyll cycle pigments to the de-epoxidized forms A plus Z, generally exhibited the most dramatic increases in response to growth irradiance. We conclude from these results that O2 photoreduction occurs at higher rates in leaves acclimated to high irradiance, despite increases in xanthophyll cycle-dependent energy dissipation, and that increases in leaf antioxidants protect against this potential oxidative stress.  相似文献   

18.
One-year-old grapevines (Vitis labrusca L. cv. Concord) were supplied with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modified Hoagland's solution twice weekly for 4 weeks. As leaf N decreased in response to N limitation, leaf chlorophyll (Chl) decreased linearly whereas leaf absorptance declined curvilinearly. Compared with high N leaves, low N leaves had lower quantum efficiency of PSII as a result of both an increase in non-photochemical quenching (NPQ) and an increase in closure of PSII reaction centres at midday under high photon flux density (PFD). Both the xanthophyll cycle pool size on a Chl basis and the conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at noon increased with decreasing leaf N. NPQ was closely related to A+Z expressed either on a Chl basis or as a percentage of the xanthophyll cycle pool. As leaf N increased, superoxide dismutase (SOD) activity on a Chl basis decreased linearly; activities of catalase (CAT) and glutathione reductase (GR) on a Chl basis increased linearly; activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) expressed on the basis of Chl decreased rapidly first, then gradually reached a low level. In response to N limitation, the contents of ascorbate (AsA), dehydroascorbate (DAsA), reduced glutathione (GSH), and oxidized glutathione (GSSG) increased when expressed on a Chl basis, whereas the ratios of both AsA to DAsA and GSH to GSSG decreased. It is concluded that, in addition to decreasing light absorption by lowering Chl concentration, both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system are up-regulated to protect low N leaves from photo-oxidative damage under high light.  相似文献   

19.
Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A mechanism of UV-B-induced inhibition of photosynthesis under field conditions is proposed.  相似文献   

20.
Potted Pinus canariensis seedlings were subjected to mild drought by withholding irrigation for one week. This treatment induced a reduction in maximum stomatal conductance (50 mmol m−2 s−1) compared to irrigated controls (130 mmol m−2 s−1). Needle water potentials of non-irrigated trees were maintained at control level (-0.44 MPa). Such a mild drought is a potential oxidative stressor due to the production of active oxygen species (AOS) in illuminated chloroplasts which lack CO2 due to stomatal closure. Photoprotective pigments (e.g. the xanthophyll cycle) may avoid this situation through light energy dissipation, and antioxidants such as ascorbic acid, tocopherols, and glutathione, may detoxify AOS. Concentrations of ascorbate, glutathione, chlorophyll, and the xanthophyll cycle carotenoids were minimal in the evening (under low light) compared to light-saturated conditions. α-Carotene was highest in the evening. These short-term changes were not affected by drought. The xanthophyll cycle pool tended to be more de-epoxidized in strongly illuminated needles of non-irrigated trees at the beginning of the experiment, but this effect was transient. The glutathione pool was more oxidized in needles of non-irrigated trees (up to 20 percnt; of total vs. 10 percnt; at control) after the xanthophyll changes took place, whereas the redox state of ascorbate remained stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号