首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed two new methods for quantifying drug release from temperature-sensitive liposomes. Large unilamellar vesicles were made by the reverse phase evaporation process. They contained a water-soluble electron paramagnetic resonance probe, trimethyl-4-amino-2,2,6,6-tetramethyl piperidine N-oxyl and the radioisotope cytosine-[3H]1-β-D-arabinofuranoside in their aqueous compartment. Release of the electron paramagnetic resonance probe was measured by placing the liposomes in a solution of a spin label quenching agent, potassium ferricyanide, and monitoring the reduction in signal strength. The measurement of radioisotope release involved rapid ultracentrifugation of the liposomes after which the supernatant was tested for the presence of radioactivity. Both methods were found to be rapid and convenient ways of measuring drug release from temperature-sensitive liposomes and both methods gave comparable results. The radioisotope assay provides a direct measurement of drug leakage, whereas the electron spin resonance assay provides a continuous marker for liposome stability as a function of temperature.  相似文献   

2.
The interaction and reaction between liposomal membrane and a functional detergent, N-hexadecyl-N-(imidazol-4-yl)methyl-N,N-dimethylammonium chloride hydroperchlorate (Im-I), have been investigated in conjunction with the leakage of bromothymol blue encapsulated as a marker in the bilayers of liposomes. Im-I carries an imidazole moiety and was expected to behave as a simple lipase model. The reaction with Im-I significantly enhanced the leakage of bromothymol blue encapsulated in the egg lecithin and dipalmitoyl phosphatidylcholine liposomes. During the course of reaction with Im-I, the formation of acyl-imidazole intermediate was clearly identified, which was certainly connected with the bromothymol blue release. From various kinetic results on bromothymol blue release and acyl-imidazole formation, it has been suggested that the bromothymol blue release from liposomal bilayer may be caused by the local and instantaneous decomposition of lipids when Im-I penetrates into the bilayer. However, it has also been demonstrated that the immediate reconstruction of liposomes retains the barrier function to protect against the further release of bromothymol blue.  相似文献   

3.
The effect of local anesthetics on the permeability of phospholipid liposomes of different composition for calcein has been investigated. The local anesthetics tested included amides (lidocaine, prilocaine, mepivacaine, and bupivacaine) and esters (benzocaine, procaine, and tetracaine). The permeability of large monolamellar liposomes was assessed by monitoring the fluorescence of calcein leaking from the phospholipid vesicles. All tested amide anesthetics exerted negligible effects on the permeability of dioleylphosphocholine (DOPC) liposomes for the fluorescent marker. The most efficient in this group was did bupivacaine. Amides had a more pronounced effect on membranes in which 20 mol % of DOPC was replaced by tetraoleoylcardiolipin (TOCL). Benzocaine and procaine at concentration up to 100 mM did not affect the permeability of DOPC liposomes. Membrane permeability of DOPC liposomes was not affected by the addition of tetracaine to the final concentration of 2 mM, while the increase of anesthetic concentration up to 50 mM was accompanied by an increase in the intensity of fluorescence of calcein released from the vesicles, and addition of the anesthetic to the concentration of 100 mM caused by complete release of the marker incorporated by the liposomes. The threshold concentration of tetracaine initiating calcein leakage from vesicles that contained 20 mol % TOCL was 7 mM, and the concentration corresponding to 100% calcein leakage was 20 mM. Confocal fluorescence microscopy of giant monolamellar liposomes formed from an equimolar mixture of DOPC and tetramiristoylcardiolipin demonstrated the destruction of solid ordered domains at the presence of anesthetics, and its destructive capacity increasing in the following order: procaine ≈ mepivacaine < bupivacaine ? tetracaine. Variability of the depth of anesthetic incorporation into the membrane may account for the dissimilar effects of local anesthetics on liposomes.  相似文献   

4.
The interaction of liposomes with macrophage cells was monitored by a new fluorescence method (Hong, K., Straubinger, R.M. and Papahadjopoulos, D., J. Cell Biol. 103 (1986) 56a) that allows for the simultaneous monitoring of binding, endocytosis, acidification and leakage. Profound differences in uptake, cell surface-induced leakage and leakage subsequent to endocytosis were measured in liposomes of varying composition. Pyranine (1-hydroxypyrene-3,6,8-trisulfonic acid, HPTS), a highly fluorescent, water-soluble, pH sensitive dye, was encapsulated at high concentration into the lumen of large unilamellar vesicles. HPTS exhibits two major fluorescence excitation maxima (403 and 450 nm) which have a complementary pH dependence in the range 5-9: the peak at 403 nm is maximal at low pH values while the peak at 450 nm is maximal at high pH values. The intra- and extracellular distribution of liposomes and their approximate pH was observed by fluorescence microscopy using appropriate excitation and barrier filters. The uptake of liposomal contents by cells and their subsequent exposure to acidified endosomes or secondary lysosomes was monitored by spectrofluorometry via alterations in the fluorescence excitation maxima. The concentration of dye associated with cells was determined by measuring fluorescence at a pH independent point (413 nm). The average pH of cell-associated dye was determined by normalizing peak fluorescence intensities (403 nm and 450 nm) to fluorescence at 413 nm and comparing these ratios to a standard curve. HPTS-containing liposomes bound to and were acidified by a cultured murine macrophage cell line (J774) with a t1/2 of 15-20 min. The acidification of liposomes exhibited biphasic kinetics and 50-80% of the liposomes reached an average pH lower than 6 within 2 h. A liposomal lipid marker exhibited a rate of uptake similar to HPTS, however the lipid component selectively accumulated in the cell; after an initial rapid release of liposome contents, 2.5-fold more lipid marker than liposomal contents remained associated with the cells after 5 h. Coating haptenated liposomes with antibody protected liposomes from the initial release. The leakage of liposomal contents was monitored by co-encapsulating HPTS and p-xylene-bis-pyridinium bromide, a fluorescence quencher, into liposomes. The time course of dilution of liposome contents, detected as an increase in HPTS fluorescence, was coincident with the acidification of HPTS. The rate and extent of uptake of neutral and negatively charged liposomes was similar; however, liposomes opsonized with antibody were incorporated at a higher rate (2.9-fold) and to a greater extent (3.4-fold).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We have developed two new methods for quantifying drug release from temperature-sensitive liposomes. Large unilamellar vesicles were made by the reverse phase evaporation process. They contained a water-soluble electron paramagnetic resonance probe, trimethyl-4-amino-2,2,6,6-tetramethyl piperidine N-oxyl and the radioisotope cytosine-[3H]1-beta-D-arabinofuranoside in their aqueous compartment. Release of the electron paramagnetic resonance probe was measured by placing the liposomes in a solution of a spin label quenching agent, potassium ferricyanide, and monitoring the reduction in signal strength. The measurement of radioisotope released involved rapid ultracentrifugation of the liposomes after which the supernatant was tested for the presence of radioactivity. Both methods were found to be rapid and convenient ways of measuring drug release from temperature-sensitive liposomes and both methods gave comparable results. The radioisotope assay provides a direct measurement of drug leakage, whereas the electron spin resonance assay provides a continuous marker for liposome stability as a function of temperature.  相似文献   

6.
Liposomes are potential drug carriers for pulmonary drug delivery: They can be prepared from phospholipids, which are endogenous to the respiratory tract as a component of pulmonary surfactant, and at an appropriate dose liposomes do not pose a toxicological risk to this organ. Among the various categories of drug that benefit from liposomal entrapment is the anti-inflammatory enzyme superoxide dismutase, thus prolonging its biological half-life. The delivery of liposomes by nebulization is hampered by stability problems, like physical and chemical changes that may lead to chemical degradation and leakage of the encapsulated drug. Here we present data of liposomes aerosolized with a novel electronic nebulizer based on a vibrating membrane technology (PARI eFlow?), which amends drawbacks like liposomes degradation and product release. The data acquisition included aerosol properties such as aerodynamic particle size, nebulization efficiency, and liposome leakage upon nebulization. In conclusion, this study shows the ability of the PARI eFlow? to nebulize high amounts of liposomal recombinant human superoxide dismutase with reduced vesicle disruption tested in an enclosing experimental protocol.  相似文献   

7.
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α‐helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram‐positive and Gram‐negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane‐mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan‐containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N‐phenyl‐1‐naphthylamine and detecting cytoplasmic β‐galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Bisulfite has been shown to induce leakage of encapsulated substances from liposomal vesicles. The bisulfite induced leakage of either DNP-tyrosine, potassium ferricyanide, or [3H]glycine was observed to be greater with lipsomes composed of phospholipids containing unsaturated fatty acids. The leakage of encapsulated substances from liposomes was found to be concentration dependent when incubated for a constant time interval and time dependent when incubated at a constant bisulfite concentration. In addition, bisulfite caused the leakage of approximately 5 times more [3H]glycine from unilamellar liposomes than from multilamellar liposomes. These findings are consistent with the interaction of bisulfite with liposomal membranes via reaction with sites of unsaturation.  相似文献   

9.
Efflux of contents from small unilamellar vesicles of various compositions, containing a highly quenched fluorescent compound (calcein, 175 mM) was determined as a function of temperature in the presence and absence of human serum. Efflux of calcein from the liposomes was monitored as an increase in fluorescence as calcein became dequenched upon release from the liposomes. The presence of serum significantly increased liposome leakage in all cases. Incorporation of increasing molar ratios of cholesterol into liposomes reduced leakage of calcein from liposomes incubated with buffer and with serum. Leakage was significantly faster from liposomes with an osmotic gradient across the membrane (higher inside) than from equiosmolar liposomes. The leakage of [14C]sucrose from egg lecithin liposomes at 37°C was also dramatically increased in the presence of serum.  相似文献   

10.
Interaction of rotavirus particles with liposomes.   总被引:5,自引:4,他引:1       下载免费PDF全文
We have studied the interactions of purified viral particles with liposomes as a model to understand the mechanism of entry of rotavirus into the cell. Liposomes, made from pure as well as mixed lipids, that contained encapsulated self-quenching concentrations of the fluorophore carboxyfluorescein (CF) were used. Rotavirus-liposome interactions were studied from the fluorescence dequenching of CF resulting from its release to the bulk solution. Purified infectious double-shelled virus particles induced a concentration- and temperature-dependent release of CF. The rate and extent of CF release was maximum between pH 7.3 and 7.6. The removal of outer structural proteins VP4 and VP7 from virus, which results in the formation of single-shelled particles, prevented virus interaction with liposomes. Rotavirus particles with uncleaved VP4 did not interact with liposomes, but treatment in situ of these particles with trypsin restored the interaction with the liposomes and resulted in CF dequenching. Our data support the view that rotavirus enters the cell through direct penetration of the plasma membrane. In contrast, adenovirus, the only other nonenveloped virus studied by this method, shows the optimum rate of marker release from liposomes at around pH 6 (R. Blumenthal, P. S. Seth, M. C. Willingham, and I. Pastan, Biochemistry 25:2231-2237, 1986). The interaction between rotavirus and liposomes is sensitive to specific divalent metal ions, unlike the adenovirus-liposome interaction, which is independent of them.  相似文献   

11.
Rhodanese (thiosulfate cyanide sulfurtransferase; E.C. 2.8.1.1) is a mitochondrial enzyme that is unprocessed after import. We describein vitro experiments showing that partially folded rhodanese can interact with lipid bilayers. The interaction was monitored by measuring the ability of rhodanese to disrupt small unilamellar vesicles composed of phosphatidylserine and to release 6-carboxyfluorescein that was trapped in the liposomes. Partially folded rhodanese, derived by dilution of urea-unfolded enzyme, efficiently induced liposome leakage. Native rhodanese had no effect on liposome integrity. Liposome disruption progressively decreased as rhodanese was given the opportunity to refold or aggregate before introduction of the liposomes. A synthetic 23 amino acid peptide representing the N-terminal sequence of rhodanese was very efficient at disrupting the liposomes. Shorter peptides chosen from within this sequence (residues 11–23 or residues 1–17) had no effect on liposome disruption. A peptide representing the tether region that connects the domains of the enzyme was also without effect. These results are consistent with the hypothesis that the N-terminal sequence of rhodanese is an uncleaved leader sequence, and can interact with membrane components that are involved in the mitochondrial uptake of this protein.  相似文献   

12.
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.  相似文献   

13.
Vincristine-sulfate–loaded liposomes were prepared with an aim to improve stability, reduce drug leakage during systemic circulation, and increase intracellular uptake. Liposomes were prepared by the thin-film hydration method, followed by coating with calcium phosphate, using the sequential addition approach. Prepared formulations were characterized for size, zeta potential, drug-entrapment efficiency, morphology by transmission electron microscopy (TEM), in vitro drug-release profile, and in vitro cell cytotoxicity study. Effect of formulation variables, such as drug:lipid ratio as well as nature and volume of hydration media, were found to affect drug entrapment, and the concentration of calcium chloride in coating was found to affect size and coating efficiency. Size, zeta potential, and TEM images confirmed that the liposomes were effectively coated with calcium phosphate. The calcium phosphate nanoshell exhibited pH-dependent drug release, showing significantly lower release at pH 7.4, compared to the release at pH 4.5, which is the pH of the tumor interstitium. The in vitro cytotoxicity study done on the lung cancer cell line indicated that coated liposomes are more cytotoxic than plain liposomes and drug solution, indicating their potential for intracellular drug delivery. The cell-uptake study done on the lung cancer cell line indicated that calcium-phosphate–coated liposomes show higher cell uptake than uncoated liposomes.  相似文献   

14.
The successful application of liposomes as a topical ophthalmic drug delivery device requires knowledge of vesicle stability in the presence of tear fluid. The release of 5-carboxyfluorescein from large unilamellar liposomes in the presence of rabbit tear fluid was studied in vitro as a function of bilayer cholesterol content. Reverse evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine and varying amounts of cholesterol. Both the rate and the extent of fluorescent dye release were significantly increased in the presence of rabbit tear fluid at all cholesterol levels. However, by incorporating increasing amounts of cholesterol in the vesicle bilayers, tear-induced leakage was reduced. The release kinetics reported in this study are similar to those observed in the presence of human serum. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, reported differences in tear protein composition suggest some other, as yet unidentified, factor.  相似文献   

15.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

16.
The two snake venom myotoxins ammodytin L and myotoxin II, purified respectively from Vipera ammodytes ammodytes and Bothrops asper, have phospholipase-like structures but lack an Asp-49 in the active site and are without normal phospholipase activity. The interaction of these proteins with different types of liposomes indicated that the myotoxins were able to provoke rapid and extensive release of the aqueous content of liposomes. Leakage was measured by two different methods: fluorescence dequenching of liposome-entrapped carboxyfluorescein and ESR measurement of intravesicular TEM-POcholine reduction by external ascorbate. The process was independent of Ca2+ and took place without any detectable phospholipid hydrolysis. Nonmyotoxic phospholipases tested under the same conditions were unable to induce liposome leakage, which could be detected only when Ca2+ was added to the medium and with the concomitant hydrolysis of phospholipids. The kinetics of Ca(2+)-dependent and Ca(2+)-independent leakage were completely different, indicating two different mechanisms of interaction with the lipid bilayer. Studies using diphenylhexatriene as a probe of lipid membrane organization indicated that the myotoxins gave rise to a profound perturbation of the arrangement of the lipid chains in the membrane interior, whereas interaction of Naja naja phospholipase A2 with the membrane surface did not affect lipid organization. On the basis of these results we suggest that a new type of cytolytic reaction mechanism is responsible for the effects of phospholipase-like myotoxins in vivo.  相似文献   

17.
Sendai virus induced leakage of liposomes containing gangliosides   总被引:2,自引:0,他引:2  
Y S Tsao  L Huang 《Biochemistry》1985,24(5):1092-1098
Sendai virus induced liposome leakage has been studied by using liposomes containing a self-quenching fluorescent dye, calcein. The liposomes used in this study were prepared by a freeze and thaw method and were composed of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine (1:2.60:1.48 molar ratio) as well as various amounts of gangliosides and cholesterol. The leakage rate was calculated from the fluorescence increment as the entrapped calcein leaked out of the liposomal compartment and was diluted into the media. It was shown that the target liposome leakage was virus dose dependent. Trypsin-treated Sendai virus in which the F protein had been quantitatively removed did not induce liposome leakage, indicating that the leakage was a direct result of F-protein interaction with the target bilayer membrane. The activation energy of this process was approximately 12 kcal/mol below 17 degrees C and approximately 25 kcal/mol above 17 degrees C. Gangliosides GM1, GD1a, and GT1b could serve as viral receptor under appropriate conditions. Liposome leakage showed a bell-shaped curve dependence on the concentration of ganglioside in the liposomes. No leakage was observed if the ganglioside content was too low or too high. Inclusion of cholesterol in the liposome bilayer suppressed the leakage rate of liposomes containing GD1a. It is speculated that the liposome leakage is a consequence of fusion between Sendai virus and liposomes.  相似文献   

18.
The effect of Clostridium perfringens alpha-toxin on liposomes prepared from phosphatidylcholine (PC) containing the fatty acyl residues of 18 carbon atoms was investigated. The toxin-induced carboxyfluorescein (CF) leakage and phosphorylcholine release from multilamellar liposomes increased as the phase transition temperature of the phosphatidylcholines containing unsaturated fatty acyl residues decreased. However, there was no difference between the sensitivity of the different phosphatidylcholines solubilized by deoxycholate to the phospholipase C (PLC) activity of the toxin. However, the toxin did not hydrolyze solubilized distearoyl-l -α-phosphatidylcholine (DSPC) or phosphatidylcholine containing saturated fatty acyl residue, and caused no effect on liposomes composed of DSPC. These results suggest that the activity of the toxin is closely related to the membrane fluidity and double bond in PC. The N-terminal domain of alpha-toxin (AT1-246) and variant H148G did not induce CF leakage from liposomes composed of dioleoyl-l -α-phosphatidylcholine (DOPC). H148G bound to the liposomes, but AT1-246 did not. However, the C-terminal domain (AT251-370) conferred binding to liposomes and the membrane-damaging activity on AT1-246. These observations suggest that the membrane-damaging action of alpha-toxin is due to the binding of the C-terminal domain of the toxin to the double bond in the PC in the bilayer and hydrolysis of the PC by the N-terminal domain.  相似文献   

19.
It is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with [14C]-lipid II. Lipid II was then purified from Micrococcus luteus and incorporated into carboxyfluorescein-loaded liposomes made of phosphatidylcholine and cholesterol (1:1). Liposomes supplemented with 0.05 or 0.1 mol% of lipid II did not release any marker when treated with Pep5 or epilancin K7 (peptide concentrations of up to 5 mol% were tested). In contrast, as little as 0.01 mol% of epidermin and 0.1 mol% of nisin were sufficient to induce rapid marker release; phosphatidylglycerol-containing liposomes were even more susceptible. Controls with moenomycin-, undecaprenol- or dodecaprenolphosphate-doped liposomes demonstrated the specificity of the lantibiotics for lipid II. These results were correlated with intact cells in an in vivo model. M. luteus and Staphylococcus simulans were depleted of lipid II by preincubation with the lipopeptide ramoplanin and then tested for pore formation. When applied in concentrations below the minimal inhibitory concentration (MIC) and up to 5–10 times the MIC, the pore formation by nisin and epidermin was blocked; at higher concentrations of the lantibiotics the protective effect of ramoplanin disappeared. These results demonstrate that, in vitro and in vivo , lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.  相似文献   

20.
The multilamellar lecithin-cholesterol liposomes entrapping carboxyfluorescence as a specific marker were prepared to be incubated with mycobacteria. The extent of resulting liposomal lysis was measured by marker release. Mycobacteria were highly active in this respect regardless of the species. Staphylococci were much less active and E. coli was completely inactive. Molecular species of lecithin and their ratio to cholesterol were related with the liposome sensitivity to mycobacteria. Ultrastructural and biochemical study showed that liposomes can be in close contact with mycobacteria and lecithins are degraded so that released fatty acids are incorporated into bacterial lipids, especially in virulent species. Liposomes-mycobacteria interaction was discussed as a partial model of the phagocyte-parasite interaction at the membrane level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号