首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unsegregated and unstructured model developed for a small-scale process of ethanol production in a tower reactor with cell recycle was applied to describe the experimental data obtained in a large-scale process. The model was developed considering the following points: reactor hydrodynamic behavior analogous to that of ideal CSTR, substrate limitation, inhibition phenomena linked both to ethanol and to biomass, absence of fermentation in the settler, and no loss of cell viability. The scale-up criterion consisted in maintaining an identical relation settler volume/fermentor volume on the two scales. All large-scale experiments were carried out using a flocculating yeast strain IR-2, isolated from fermented food, and identified as Saccharomyces cerevisiae. Sugarcane juice was used as the substrate source with sugar concentrations of 150?g/l. Different values of dilution rate and recycle ratio were employed (D?=?0.11–0.33?h?1, α?=?5.4–18.0) and the temperature was of 32?°C. The kinetic parameters were similar on both scales and the model predictions agreed well with the large-scale experimental data.  相似文献   

2.
Summary Continuous fermentation fed by 150 kg/m3 of glucose with total cell recycling by tangential microfiltration enabled yeasts concentration of 300 kg/m3 (dry weight) to be reached with a dilution rate of 0,5h–1 and a cell viability greater than 75%. The stability of this system was tested for 50 residence times of the permeate. The method can be used both for the production of cell concentrates and for high rates of metabolite production.Nomenclature D. W. dry weight - XT (kg/m3) total cell concentration D.W. - XV (kg/m3) viable cell concentration D.W. - V viability of cell culture in per cent of total cell concentration - S (kg/m3) glucose concentration - P (kg/m3) ethanol concentration - D (h) dilution rate - R (kg/kg) fermentation yield - (h) specific growth rate - vp(kg/kg/h) specific alcohol production rate - (m) yeast size - (kg/kg) kg of intracellular water per kg of dry cells  相似文献   

3.
The concept of loss of cell viability was introduced into a model previously developed for a continuous alcoholic fermentation process in a tower reactor with recycling of flocculating yeasts. The two models take into account substrate limitation and inhibition phenomena linked to ethanol and biomass. The kinetic parameters were estimated from steady-state data of several sugar concentrations in feeding stream and constant dilution rate, recycle ratio and temperature. Some parameters of the modified model (maximum specific rates) were significantly different from those estimated with the original model while others (inhibition parameters) remained practically unchanged. Both models provided similar predictions and were equally suitable for modelling of the process.  相似文献   

4.
Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low‐solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF‐CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local‐scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF‐CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:946–956, 2015  相似文献   

5.
Summary A continuous single stage yeast fermentation with cell recycle by ultrafiltration membranes was operated at various recycle ratios. Cell concentration was increased 10.6 times, and ethanol concentration and fermentor productivity both 5.3 times with 97% recycle as compared to no recycle. Both specific growth rate and specific ethanol productivity followed the exponential ethanol inhibition form (specific productivity was constant up to 37.5 g/l of ethanol before decreasing), similar to that obtained without recycle, but with greater inhibition constants most likely due to toxins retained in the system at hight recycle ratios.By analyzing steady state data, the fractions of substrate used for cell growth, ethanol formation, and what which were wasted were accounted for. Yeast metabolism varied from mostly aerobic at low recycle ratios to mostly anaerobic at high recycle ratios at a constant dissolved oxygen concentration of 0.8 mg/kg. By increasing the cell recycle ratio, wasted substrate was reduced. When applied to ethanol fermentation, the familiar terminology of substrate used for Maintenance must be used with caution: it is not the same as the wasted substrate reported here.A general method for determining the best recycle ratio is presented; a balance among fermentor productivity, specific productivity, and wasted substrate needs to be made in recycle systems to approach an optimal design.Nomenclature B Bleed flow rate, l/h - C T Concentration of toxins, arbitrary units - D Dilution rate, h-1 - F Filtrate or permeate flow rate, removed from system, l/h - F o Total feed flow rate to system, l/h - K s Monod form constant, g/l - P Product (ethanol) concentration, g/l - P o Ethanol concentration in feed, g/l - PP} Adjusted product concentration, g/l - PD Fermentor productivity, g/l-h - R Recycle ratio, F/F o - S Substrate concentration in fermentor, g/l - S o Substrate concentration in feed, g/l - V Working volume of fermentor, l - V MB Viability based on methylene blue test - X Cell concentration, g dry cell/l - X o Cell concentration in feed, g/l - Y ATP Cellular yield from ATP, g cells/mol ATP - Y ATPS Yield of ATP from substrate, mole ATP/mole glucose - Y G True growth yield or maximum yield of cells from substrate, g cell/g glucose - Y P Maximum theoretical yield of ethanol from glucose, 0.511 g ethanol/g glucose - Y P/S Experimental yield of product from substrate, g ethanol/g glucose - Y x/s Experimental yield of cells from substrate, g cell/g glucose - S NP/X Non-product associated substrate utilization, g glucose/g cell - k 1, k2, k3, k4 Constants - k 1 APP , k 2 APP Apparent k 1, k3 - k 1 TRUE True k 1 - m Maintenance coefficient, g glucose/g cell-h - m * Coefficient of substrate not used for growth nor for ethanol formation, g glucose/g cell-h - Specific growth rate, g cells/g cells-h, reported as h-1 - m Maximum specific growth rate, h-1 - v Specific productivity, g ethanol/g cell-h, reported as h-1 - v m Maximum specific productivity, h-1  相似文献   

6.
The control of poly-beta-hydroxybutyrate (PHB) productivity in a continuous bioreactor with cell recycle is studied by simulation. A cybernetic model of PHB synthesis in Alcaligenes eutrophus is developed. Model parameters are identified using experimental data, and simulation results are presented. The model is interfaced to a multirate model predictive control (MPC) algorithm. PHB productivity and concentration are controlled by manipulating dilution rate and recycle ratio. Unmeasured time varying disturbances are imposed to study regulatory control performance, including unreachable setpoints. With proper controller tuning, the nonlinear MPC algorithm can track productivity and concentration setpoints despite a change in the sign of PHB productivity gain with respect to dilution rate. It is shown that the nonlinear MPC algorithm is able to track the maximum achievable productivity for unreachable setpoints under significant process/model mismatch. The impact of model uncertainty upon controller performance is explored. The multirate MPC algorithm is tested using three controllers employing models that vary in complexity of regulation. It is shown that controller performance deteriorates as a function of decreasing biological complexity.  相似文献   

7.
Cell recycle by microfiltration was used in yeast alcoholic fermentation in continuous operation. Toxins were proved to be washed by increasing dilution rate. — Specific ethanol production rate followed an exponential inhibition equation, which is function of both biomass concentration and dilution rate. — Productivity is shown to be 40 times greater than in conventional continuous operation.  相似文献   

8.
High ethanol productivities were obtained by cell recycle cultures of yeast and bacterial strains at a dry cell concentration of 200 kg cells m–3 using a new membrane bioreactor system. The filtration rates of the cultures were stabilized by removing the microbial cake on the filter with periodic back flows of the fermentation gas through the filter. For instance, the filtration flux of 0.023 m3m–2h–1 was maintained for 30 h with the periodic cleaning of the filter, whereas it decreased at a half time of 2 h without the cleaning. Ethanol productivity, ethanol concentration and filtration flux attained were: 68.7 kg/(m3 · h), 62.7 kg/m3 and 0.029 m3m–2h–1 for Saccharomyces carlsbergensis, LAM1068, the respective values for Zymomonas mobilis, ZM4, were: 93.7, 33 5 and 0.074.  相似文献   

9.
Summary The effect of intracellular as well extracellular ethanol concentration on the viability ofZymomonas mobilis during a fed-batch fermentation was examined. The cells retained their viability until ethanol attained 69.5 ± 1.55 and 69 ± 1.6g/l for respectively, extracellular and intracellular values.Z. mobilis does not therefore accumulate ethanol in the cells. The number of dead cells increased after exposure to ethanol. The maximal efficiency of the fermentation was 95.5% (3.82 mol of ethanol-mol sucrose).
Contenu intra-cellulaire en éthanol et viabilité des cellules de Zymomonas mobilis pendant une fermentation éthanolique en milieu non renouvelé à alimentation étagée
Résumé On a examiné l'effet de la concentration en éthanol tant inta- que extra-cellulaire sur la viabilité deZymomonas mobilis pendant une fermentation en milieu non renouvelé à alimentation étagée. Les cellules ont gardé leur viabilité jusqu'à ce que la concentration atteigne 69.5 ± 1.55 et 69 ±a 1.6 g/l respectivement pour les valeurs extra- et intra-cellulaires. Il en résulte queZymomonas mobilis n'accumule pas l'éthanol dans les cellules. Le nombre de cellules mortes augmentait après l'exposition à l'éthanol. L'efficience maximum de la fermentation était de 95.5% (3.82 mol d'éthanol/mol de sucrose).
  相似文献   

10.
Summary A strain of Saccharomyces uvarum produced extracellular invertase in a chemostat reactor using a medium containing corn steep liquor and sugars. The production of yeast invertase increased with increase in corn steep liquor concentration. The production rate of invertase was maximal at a dilution rate of 0.75 h–1. The production rate of invertase was found to be affected by the type of sugar substrate and fermentation temperature. The invertase in the crude broth could be purified by one-step DEAE chromatography. An 84% enzyme recovery with ninefold purification and 30-fold concentration could be achieved using this simple isolation procedure. Offsprint requests to: L. F. Chen  相似文献   

11.
AIMS: To identify and characterize the main contaminant yeast species detected in fuel-ethanol production plants in Northeast region of Brazil by using molecular methods. METHODS AND RESULTS: Total DNA from yeast colonies isolated from the fermentation must of industrial alcohol plants was submitted to PCR fingerprinting, D1/D2 28S rDNA sequencing and species-specific PCR analysis. The most frequent non-Saccharomyces cerevisiae isolates were identified as belonging to the species Dekkera bruxellensis, and several genetic strains could be discriminated among the isolates. The yeast population dynamics was followed on a daily basis during a whole crop harvesting period in a particular industry, showing the potential of D. bruxellensis to grow faster than S. cerevisiae in industrial conditions, causing recurrent and severe contamination episodes. CONCLUSIONS: The results showed that D. bruxellensis is one of the most important contaminant yeasts in distilleries producing fuel-ethanol from crude sugar cane juice, specially in continuous fermentation systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Severe contamination of the industrial fermentation process by Dekkera yeasts has a negative impact on ethanol yield and productivity. Therefore, early detection of D. bruxellensis in industrial musts may avoid operational problems in alcohol-producing plants.  相似文献   

12.
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l−1 glucose. An average ethanol concentration of 124.6 g l−1 or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h−1. The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.  相似文献   

13.
14.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

15.
Summary A novel technique for the rapid settling of yeast cells is outlined. An inert, high density powder is added to a yeast suspension and the pH of the suspension is switched rapidly from 4.5 (fermentation pH) to 8.0. Large, rapid settling flocs of yeast are formed immediately. This technique has been applied to the recycling of yeast from an ethanolic fermentation.  相似文献   

16.
The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.  相似文献   

17.
18.
In this work, a procedure for estimating kinetic parameters in biochemically structured models was developed. The approach is applicable when the structure of a kinetic model has been set up and the kinetic parameters should be estimated. The procedure consists of five steps. First, initial values were found in or calculated from literature. Hereafter using sensitivity analysis the most sensitive parameters were identified. In the third step physiological knowledge was combined with the parameter sensitivities to manually tune the most sensitive parameters. In step four, a global optimisation routine was applied for simultaneous estimation of the most sensitive parameters identified during the sensitivity analysis. Regularisation was included in the simultaneous estimation to reduce the effect of insensitive parameters. Finally, confidence intervals for the estimated parameters were calculated. This parameter estimation approach was demonstrated on a biochemically structured yeast model containing 11 reactions and 37 kinetic constants as a case study.  相似文献   

19.
Summary The effects of pCO2 were investigated by changing the aeration rate, the purging gas and the total pressure in a chemostat cultivatioa Under glucose supply limitation, an increase in pCO2 from 44 kPa to 195 kPa resulted in 25 % decrease in cell concentration, 8 % increase in ethanol concentration, and 50 % decrease in glycerol concentration. Under oxygen supply limitation, similar dependency of ethanol and glycerol on pCO2 was observed, however, no influence of pCO2 on the cell yield was observed. The change in ethanol yield by pCO2 appeared to be caused by the equilibrium shift of pyruvate dehydrogenase system.On leave from Kasetsart Univ., Bangkok 10903, ThailandOn leave from JGC Corporation, Bessho 1-14-1, Minami-Ku, Yokohama, Kanagawa, 232 Japan  相似文献   

20.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号