首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetics of carbon metabolism in methylotrophic bacteria   总被引:1,自引:0,他引:1  
Abstract The application of genetic techniques to the methylotrophic bacteria has greatly enhanced studies of these important organisms. Two methylotrophic systems have been studied in some detail, the serine cycle for formaldehyde assimilation and the methanol oxidation system. In both cases, genes have been cloned and mapped in Methylobacterium species (facultative serine cycle methanol-utilizers). In addition, methanol oxidation genes have been studied in an autotrophic methanol-utilizer ( Paracoccus denitrificans ) and three methanotrophs ( Methylosporovibrio methanica, Methylomonas albus and Methylomonas sp. A4). Although much remains to be learned in these systems, it is becoming clear that the order of C1 genes has been conserved to some extent in methylotrophic bacteria, and that many C1 genes are loosely clustered on the chromosome. Operons appear to be rare, but some examples have been observed. The extension of genetic approaches to both the obligate and facultative methylotrophs holds much promise for the future in understanding and manipulating the activities of these bacteria.  相似文献   

2.
The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in Polyhydroxyalkanoates (PHAs) and the biosynthetic machinery for PHA metabolism has been the area of research over the last two decades. PHAs are polyesters of hydroxyalkanoates synthesized by numerous bacterial species with atleast five different PHA biosynthetic pathways. These are accumulated as an intracellular carbon and energy storage material. This diversity, in combination with genetic and molecular engineering has opened up this area for development of optimum PHA producing organisms. Even though PHAs have been recognized as a good candidate for biodegradable plastics, their industrial application is limited owing to high production cost. The classical microbiology and modern molecular biology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHA. This review provides an overview of the different PHA biosynthetic systems, the enzymes involved in PHA biosynthesis and there genetic background followed by a detailed summation of how this natural diversity is being used to develop commercially attractive recombinant process for large scale production of PHAs.  相似文献   

3.
Within the past few years, considerable progress has been made in the understanding of the molecular genetics of methane and methanol oxidation. In order to summarize this progress and to illustrate the important genetic methods employed, this review will focus on several well-studied organisms. These organisms include the gramnegative faculative methylotrophsMethylobacterium extorquens, Methylobacterium organophilum andParacoccus denitrificans. In addition, the obligate methanotrophsMethylococcus capsulatus andMethylosinus trichosporium are discussed. We have chosen not to discuss the genetics of methanol oxidation in the yeasts or in gram-positive bacteria. Likewise, the genetics of related topics (for example, methylamine oxidation and carbon assimilation pathways) are not reviewed here. Broad host range conjugatable plasmids have enabled researchers to complement mutations and clone genes from gram-negative methylotrophic bacteria. More recently, promoter probe derivative plasmids have been used to elucidate aspects of gene regulation. Also, alternative gene-cloning techniques are proving useful in circumventing problems in the genetic studies of the obligate methanotrophs, the group of bacteria that is the most refractory to traditional methods.  相似文献   

4.
A wide range of techniques is now available for the construction of hybrid DNA molecules comprising components from disparate species. Transfer of segments of DNA from other organisms, and especially eukaryotes, to Escherichia coli permits their preparation in quantities sufficient for detailed analysis of their structure and mechanism of expression. This information could be exploited to enhance the quantity or quality of polypeptide products from bacterial cells. Greatly increased yields of bacterial enzymes have been obtained in this way in several instances. The approaches that have been pioneered with bacteria are currently being applied to higher organisms. Much work is in progress with yeasts, in which transformation has been successfully demonstrated, with animal viruses and cells in culture and with some plant systems and offers the promise of wider application of genetic engineering in the not too distant future.  相似文献   

5.
The study of the phenomenon of dosage compensation by classical genetic and cytological means has led in the past to some fundamental observations on the nature and function of the genetic material. Modern molecular techniques applied to the study of the same phenomenon have helped to uncover elements of genetic regulation that have broad biological significance. Given that the vast majority of the work has been and is still performed in three model systems, the purpose of this paper is to evaluate the contribution of other organisms to our understanding of this phenomenon and to explore their potential use in future studies.  相似文献   

6.
7.
The formation of the segmentation pattern in Drosophila embryos provides an excellent model for investigating the process of pattern formation in multicellular organisms. Several genes required in an embryo for normal segmentation have been analyzed by classical and molecular genetic and morphological techniques. A detailed consideration of these results suggests that these segmentation genes are combinatorially involved in translating the positional identities of individual cells at an early stage in Drosophila development.  相似文献   

8.
9.
10.
Diverse methylotrophic bacteria were isolated from the tongue, and supra- and subgingival plaque in the mouths of volunteers and patients with periodontitis. One-carbon compounds such as dimethylsulfide in the mouth are likely to be used as growth substrates for these organisms. Methylotrophic strains of Bacillus, Brevibacterium casei, Hyphomicrobium sulfonivorans, Methylobacterium, Micrococcus luteus and Variovorax paradoxus were characterized physiologically and by their 16S rRNA gene sequences. The type strain of B. casei was shown to be methylotrophic. Enzymes of methylotrophic metabolism were characterized in some strains, and activities consistent with growth using known pathways of C1-compound metabolism demonstrated. Genomic DNA from 18 tongue and dental plaque samples from nine volunteers was amplified by the polymerase chain reaction using primers for the 16S rRNA gene of Methylobacterium and the mxaF gene of methanol dehydrogenase. MxaF was detected in all nine volunteers, and Methylobacterium was detected in seven. Methylotrophic activity is thus a feature of the oral bacterial community.  相似文献   

11.
Physiology and genetics of methylotrophic bacteria   总被引:3,自引:0,他引:3  
Methylotrophic bacteria comprise a broad range of obligate aerobic microorganisms, which are able to proliferate on (a number of) compounds lacking carbon-carbon bonds. This contribution will essentially be limited to those organisms that are able to utilize methanol and will cover the physiological, biochemical and genetic aspects of this still diverse group of organisms. In recent years much progress has been made in the biochemical and genetic characterization of pathways and the knowledge of specific reactions involved in methanol catabolism. Only a few of the genetic loci hitherto found have been matched by biochemical experiments through the isolation or demonstration of specific gene products. Conversely, several factors have been identified by biochemical means and were shown to be involved in the methanol dehydrogenase reaction or subsequent electron transfer. For the majority of these components, their genetic loci are unknown. A comprehensive treatise on the regulation and molecular mechanism of methanol oxidation is therefore presented, followed by the data that have become available through the use of genetic analysis. The assemblage of methanol dehydrogenase enzyme, the role of pyrrolo-quinoline quinone, the involvement of accessory factors, the evident translocation of all these components to the periplasm and the dedicated link to the electron transport chain are now accepted and well studied phenomena in a few selected facultative methylotrophs. Metabolic regulation of gene expression, efficiency of energy conservation and the question whether universal rules apply to methylotrophs in general, have so far been given less attention. In order to expand these studies to less well known methylotrophic species initial results concerning such area as genetic mapping, the molecular characterization of specific genes and extrachromosomal genetics will also pass in review.  相似文献   

12.
As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.  相似文献   

13.
Recent advances in the genetics of the clostridia   总被引:27,自引:0,他引:27  
Several laboratories around the world have started work on genetic analysis of clostridia. Interest in this diverse group of anaerobic organisms has grown with increasing awareness of the benefits that may accrue from their biotechnological exploitation. Research to date has focussed on construction of shuttle vectors containing replicons from clostridial and streptococcal plasmids, development of methods for transferring genes, and molecular cloning of genes--especially those involved in toxigenicity, fermentative metabolism and polysaccharide utilization. In selected species gene transfer by protoplast transformation, electroporation and conjugation has been accomplished and transposable elements have been introduced. It can be anticipated that our understanding of the molecular biology of these interesting organisms will grow rapidly in the future, bringing with it improved prospects for rational biotechnological exploitation.  相似文献   

14.
Chemistry and biology of eukaryotic iron metabolism   总被引:13,自引:0,他引:13  
With rare exceptions, virtually all studied organisms from Archaea to man are dependent on iron for survival. Despite the ubiquitous distribution and abundance of iron in the biosphere, iron-dependent life must contend with the paradoxical hazards of iron deficiency and iron overload, each with its serious or fatal consequences. Homeostatic mechanisms regulating the absorption, transport, storage and mobilization of cellular iron are therefore of critical importance in iron metabolism, and a rich biology and chemistry underlie all of these mechanisms. A coherent understanding of that biology and chemistry is now rapidly emerging. In this review we will emphasize discoveries of the past decade, which have brought a revolution to the understanding of the molecular events in iron metabolism. Of central importance has been the discovery of new proteins carrying out functions previously suspected but not understood or, more interestingly, unsuspected and surprising. Parallel discoveries have delineated regulatory mechanisms controlling the expression of proteins long known--the transferrin receptor and ferritin--as well as proteins new to the scene of iron metabolism and its homeostatic control. These proteins include the iron regulatory proteins (IRPs 1 and 2), a variety of ferrireductases in yeast an mammalian cells, membrane transporters (DMT1 and ferroportin 1), a multicopper ferroxidase involved in iron export from cells (hephaestin), and regulators of mitochondrial iron balance (frataxin and MFT). Experimental models, making use of organisms from yeast through the zebrafish to rodents have asserted their power in elucidating normal iron metabolism, as well as its genetic disorders and their underlying molecular defects. Iron absorption, previously poorly understood, is now a fruitful subject for research and well on its way to detailed elucidation. The long-sought hemochromatosis gene has been found, and active research is underway to determine how its aberrant functioning results in disease that is easily controlled but lethal when untreated. A surprising connection between iron metabolism and Friedreich's ataxia has been uncovered. It is no exaggeration to say that the new understanding of iron metabolism in health and disease has been explosive, and that what is past is likely to be prologue to what is ahead.  相似文献   

15.
As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host–parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.  相似文献   

16.
A new broad host range plasmid pM3 (IncP-9) was found in a facultative methylotrophic bacteria Pseudomonas putida and described. The pM3 plasmid is characterized by thermo-instability in Enterobacteriaceae family of bacteria at 36 degrees C or higher temperatures. It is also unable to be inherited as an autonomous element in the obligate methylotrophic bacteria Methylobacillus M75. The peculiarities of plasmid inheritance make possible to use it as a tool for genetic research, for instance, to construct the donor strains in Methylobacillus M75 able to mobilize the chromosomal genes for conjugational transfer in isogenic systems of crosses.  相似文献   

17.
Myoblast fusion in Drosophila   总被引:2,自引:0,他引:2  
Somatic muscle formation is an unusual process as it requires the cells involved, the myoblasts, to relinquish their individual state and fuse with one another to form a syncitial muscle fiber. The potential use of myoblast fusion therapies to rebuild damaged muscles has generated continuing interest in elucidating the molecular basis of the fusion process. Yet, until recently, few of the molecular players involved in this process had been identified. Now, however, it has been possible to couple a detailed understanding of the cellular basis of the fusion process with powerful classical and molecular genetic strategies in the Drosophila embryo. We review the cellular studies, and the recent genetic and biochemical analyses that uncovered interacting extracellular molecules present on fusing myoblasts and the intracellular effectors that facilitate fusion. With the conservation of proteins and protein functions across species, it is likely that these findings in Drosophila will benefit understanding of the myoblast fusion process in higher organisms.  相似文献   

18.
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.  相似文献   

19.
Abstract Several laboratories around the world have started work on genetic analysis of clostridia. Interest in this diverse group of anaerobic organisms has grown with increasing awareness of the benefits that may accrue from their biotechnological exploitation. Research to date has focussed on construction of shuttle vectors containing replicons from clostridial and streptococcal plasmids, development of methods for transferring genes, and molecular cloning of genes—especially those involved in toxigenicity, fermentative metabolism and polysaccharide utilization. In selected species gene transfer by protoplast transformation, electroporation and conjugation has been accomplished and transposable elements have been introduced. It can be anticipated that our understanding of the molecular biology of these interesting organisms will grow rapidly in the future, bringing with it improved prospects for rational biotechnological exploitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号