首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short chain flavour esters synthesis by microbial lipases   总被引:6,自引:0,他引:6  
Summary The peparative synthesis of 35 short chain flavour esters by lipases fromMucor miehi, Aspergillus sp.,Candida rugosa andRhizopus arrhizus was investigated in organic media. Acetic, propionic, butyric, valeric and caproic acids, as well as methanol, ethanol, butanol, i-pentanol, hexanol, citronellol and geraniol were used as substrates. Most of the esters were synthesized in good yield by at least one of the lipase preparations tested. Different conversion yields were observed according to the lipase specificity toward the acid or the alcohol moiety of the ester. Methyl- and ethyl acetates were also produced by changing the organic solvent. Enzymatic catalysis in organic solvent is thought to be a valuable method for preparative synthesis of flavour esters.  相似文献   

2.
Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol   总被引:1,自引:0,他引:1  
Synthesis of 6-O-acylate--d-glycopyranose from underivatised substrates in anhydrous tert-butanol was achieved using immobilised lipases from Candida antarctica and Mucor miehei. Except for acetic acid, the initial reaction rates with the C. antarctica lipase were independent of acyl donor chain lengths and in a range of 3.9±0.4 mol glucose converted min–1 g enzyme preparation. The catalytic activity of the M. miehei lipase increased with increasing acyl donor chain length with a maximum for stearic acid of 0.45 mol min–1 g. Using maltose as substrate, the catalytic activity decreased by a factor of 48 and 20 with the lipase from C. antarctica and M. miehei, respectively, while with maltotriose no reaction was observed.  相似文献   

3.
Enzymatic synthesis of terpenyl esters by esterification or transesterification with fatty acid vinyl esters as acyl donors by celite-adsorbed lipase of Trichosporon fermentans was investigated. In direct esterification of geraniol, the lipase showed high reactivity toward fatty acids with carbon chains longer than C-8, but little reactivity toward fatty acids with shorter chains. With fatty acid vinyl esters as acyl donors, the lipase catalysed the synthesis of geranyl and citronellyl esters with carbon chains shorter than C-6 in with yields of >90% molar conversion. Time course, effects of added water, temperature and substrate concentration were studied for the synthesis of geranyl acetate. Molar conversion yield reached 97.5% after 5 h incubation at 30–40°C with the addition of 3% water. In this reaction, no inhibition by substrates such as geraniol and vinyl acetate was observed.  相似文献   

4.
Fusarium solani pisi recombinant cutinase, solubilized in AOT/isooctane-reversed micelles, was used to catalyze the esterification of fatty acids with aliphatic alcohols. Some relevant parameters for the enzyme activity such as pH, W(o) (water/surfactant molar ratio), temperature, and substrate concentration were optimized. Maximal specific activity was obtained for hexanol. The cutinase showed selectivity for short-chain fatty acids. The stability of the microencapsulated cutinase was investigated at various concentrations of water and different values of pH. Oleic acid had a negative effect on the cutinase stability, while hexanol proved to be a strong stabilizer increasing the half-life of the enzyme about 45 times. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Esterification reactions between long-chain alcohol and oleic acid were performed for producing wax esters. The reaction can be catalyzed efficiently by cell-bound lipase of Rhizopus niveous fungal cells immobilized within cellulose biomass support particles. Carrying out the reaction in a solvent-free system is feasible by adding a molecular sieve for dehydration purposes. To optimize the yield, addition of a molecular sieve should be performed gradually during the whole course starting from the beginning of the reaction. The influence of reaction conditions such as temperature and substrate concentrations on reaction rates and yields were investigated; however, this reaction system is under the influence of both internal and external mass transfer resistance. Conducting the reaction in an organic solvent system with hexane or heptane as the solvent can eliminate diffusional effects. Reaction kinetics were subjected to detailed study in this system. The kinetics of the reaction can be represented satisfactorily by a Ping-Pong Bi Bi mechanism with deadend inhibition by alcohol.  相似文献   

6.
The feasibility of altering the chain length specificity of industrially important Rhizomucor miehei lipase was investigated by randomly mutating Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. The recombinant lipase was initially expressed in E. coli. Individual colonies were selected, grown, and the DNA sequence of the lipase gene determined. Fourteen of the 19 possible mutants were identified and each of these was transformed into Pichia pastoris which expresses the enzyme extracellularly. The yeast was grown and the supernatants assessed in several assays with long and short chain substrates. Based on this preliminary screen, one mutant, Phe94Gly, was selected and purified to homogeneity for further analysis. It was found that the substitution of phenylalanine 94 with glycine led to an enzyme which was about six times less active against resorufin ester but displayed 3-4 times higher activity with short chain substrates such as butyric acid esters. The observed alteration to the enzyme specificity was rationalised using the available 3D structure of the lipase.  相似文献   

7.
Fatty acid sugar esters are non-ionic detergents with multiple uses in the cosmetic, food, and pharmaceutical industries. Of the many different sugar esters synthesized, lactose, a by-product of cheese manufacture, has not been investigated. The objective of this research was to investigate the synthesis of novel lactose monolaurate (LML) and sucrose monolaurate (as a comparison) (SML) using four different immobilized lipases in three different solvents at constant sugar, vinyl laurate, temperature, and enzyme concentrations. Overall, the solvent 2-methyl-2-butanol gave the highest yields and reactions rates for the synthesis of both LML and SML. Of the immobilized lipases, those from Pseudomonas cepacia, Mucor miehei and Thermomyces lanuginosus were effective depending on the sugar/solvent combination. Higher overall yields were obtained for the synthesis of LML with the differences in yields presumably due to the decreased solubility of sucrose as compared to lactose in 3 of the solvents used. Response surface methodology was used to determine the optimal temperature, enzyme concentration and ratio of reactants for LML synthesis using the immobilized lipase from M. miehei in 2-methyl-2-butanol. Based on the analysis of ridge max, the optimal synthesis conditions were predicted to occur at 61 °C, with an enzyme amount of 32 mg/mL, and a molar ratio of lactose to vinyl laurate of 1:3.8; and the optimal actual yield was 99.3%.  相似文献   

8.
Lipases and esterases are frequently used in dairy production processes to enhance the buttery flavour of the end product. Short chain fatty acids, and especially butanoic acid, play a key role in this and different enzymes with specificity towards short chain fatty acids are commercially available as potent flavouring tools. We have compared six lipases/esterases associated with buttery flavour production. Although specificity to short chain fatty acids was ascribed to each enzyme, clear differences in free fatty acid profiles were found when these enzymes were applied on cream. Candida cylindraceae lipase was the most useful enzyme for buttery flavour production in cream with the highest yield of free fatty acids (57 g oleic acid 100 g−1 fat), no release of long chain fatty acids and specificity towards butanoic acid.  相似文献   

9.
Artificial nanotransport systems inspired by intracellular transport processes have been investigated for over a decade using the motor protein kinesin and microtubules. However, only unidirectional cargo transport has been achieved for the purpose of nanotransport in a microfluidic system. Here, we demonstrate bidirectional nanotransport by integrating kinesin and dynein motor proteins. Our molecular system allows microtubule orientation of either polarity in a microfluidic channel to construct a transport track. Each motor protein acts as a nanoactuators that transports microspheres in opposite directions determined by the polarity of the oriented microtubules: kinesin-coated microspheres move toward the plus end of microtubules, whereas dynein-coated microspheres move toward the minus end. We demonstrate both unidirectional and bidirectional transport using kinesin- and dynein-coated microspheres on microtubules oriented and glutaraldehyde-immobilized in a microfluidic channel. Tracking and statistical analysis of microsphere movement demonstrate that 87-98% of microspheres move in the designated direction at a mean velocity of 0.22-0.28 microm/s for kinesin-coated microspheres and 0.34-0.39 microm/s for dynein-coated microspheres. This bidirectional nanotransport goes beyond conventional unidirectional transport to achieve more complex artificial nanotransport in vitro.  相似文献   

10.
Wax esters were obtained from lipase-catalysed alcoholysis of triglycerides with cetyl alcohol, using n-hexane as solvent. The heavy triglyceride fraction (HTF), obtained by fractionation of sheep milk fat, was used as raw material. In the natural fat mixture GC analysis showed that palmitic, myristic, stearic and oleic acids are the most abundant fatty acids which are useful to produce wax esters. Reactions were tested for different amounts of Lipozyme RMIM catalyst, and the optimum concentration of 10 mg catalyst/ml solution has been determined. The formation of the four main products, i.e. cetyl myristate, cetyl palmitate, cetyl oleate and cetyl stearate, was determined by HPLC/ELSD quantitative analysis. The optimum water activity in the reaction medium aw=0.35 in the case of Lipozyme RMIM, and aw=0.53 for Novozym 435 was found. Lipozyme RMIM (immobilised sn-1,3-specific lipase from Rhizomucor miehei) was more active than Novozym 435 (immobilised nonspecific lipase-B from Candida antarctica) towards wax esters production. The acyl migration of 2-monoglycerides was suggested as a crucial step to explain the higher yields produced by the 1,3-specific lipase.  相似文献   

11.
Biosynthesis of pentyl and terpene valerates, terpene acetates, hexyl and benzyl benzoates was conducted via alcoholysis, at 55 °C, in a solvent-free medium, using lipases from Candida antarcticaand Mucor mieheias catalysts. The yield higher than 90% was achieved (Candida antarctica)after 10 h for synthesis of pentyl valerate and 3-methylbutyl valerate, 35 h for 2-methylbytyl valerate, 6 h for geranyl and cytronelyl acetates, 10 h for geranyl and cytronelyl valerates, 75 h for hexyl benzoate and 100 h for benzyl benzoate.  相似文献   

12.
The effect of solvents and solvent mixtures on the synthesis of myristic acid esters of different carbohydrates with an immobilized lipase from C. antarctica was investigated. The rate of myristyl glucose synthesized by the enzyme was increased from 3.7 to 20.2 micromol min(-1) g(-1) by changing the solvent from pure tert-butanol to a mixture of tert-butanol:pyridine (55:45 v/v), by increasing the temperature from 45 degrees C to 60 degrees C, and by optimizing the relative amounts of glucose, myristic acid, and the enzyme preparation. Addition of more than 2% DMSO to the tert-butanol:pyridine system resulted in a reduction of enzyme activity. Lowering the water content of the enzyme preparation below 0.85% (w/w) resulted in significant decreases in enzyme activity, while increasing the water content up to 2.17% (w/w) did not significantly affect the enzyme activity. The highest yields of myristyl glucose were obtained when an excess of unsolubilized glucose was present in the reaction system. In this case, all of the initially solubilized and a significant amount of the initially unsolubilized glucose was converted to the ester within 24 h of incubation, resulting in a myristyl glucose concentration of 34 mg/mL(-1). Myristic acid esters of fructose (22.3 micromol min(-1) g(-1)), alpha-D-methyl-glucopyranoside (26.9 micromol min(-1) g(-1)) and maltose (1.9 micromol min(-1) g(-1)) could also be prepared using the tert-butanol:pyridine solvent system. No synthesis activity was observed with maltotriose, cellobiose, sucrose, and lactose as substrate.  相似文献   

13.
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.  相似文献   

14.
The effect of water activity (a(w)) and immobilization on fatty acid (FA) selectivity of Burkholderia (formerly Pseudomonas) cepacia, Rhizomucor miehei, Candida antarctica (type B), and Candida rugosa lipases in esterification reactions was determined. Studies were based on measuring ester formation in multicompetitive reaction mixtures containing either the homologous series of even carbon number n-chain saturated FA (C4-C18) or a series of n-chain (un)saturated FA (C18:X, where X = 0-3 double bonds) as cosubstrates with 1,3-propanediol in ter-butyl methyl ether at a(w) of 0.19, 0.69, and 0.90. Activity and FA selectively patterns were similar for free and Celite-adsorbed lipases in response to changes in a(w'), although specific effects were observed for selectivity of B. cepacia and C. rugosa lipases toward C16 and C4/C6 FA, respectively. Also, selectivity toward unsaturated C18:X FA as a group was modulated by changes in a(w) for three of the four lipase studied. Resin-fixed lipases from R. miehei and C. antarctica exhibited profound differences in activity and FA selectively in response to changes in a(w'), relative to free and Celite-bound forms. These findings suggest that FA selectivity for lipid modification is influenced by a(w) and immobilization, but that each lipase has a characteristic response to these factors in a manner that cannot be predicted.  相似文献   

15.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

16.
To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1 mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance.  相似文献   

17.
To enhance water solubility of 10-undecylenic acid, which has anti-fungus, anti-bacterial and anti-virus activity, d-glucose, trehalose and sucrose were regioselectively esterified with vinyl 10-undecylenic acid ester in dimethyl formamide by a commercial protease, Bioprase conc., from Bacillus subtilis. 6-O-(10-Undecylenoyl) d-glucose, 6-O-(10-undecylenoyl) trehalose and 1-O-(10-undecylenoyl) sucrose were obtained. The influence of structural variation by changing the sugar moiety was analyzed the surface tension and biodegradability.  相似文献   

18.
We investigated the effects of the lyophilisation medium (enzyme plus buffer salt and additives) and of water activity (a(w)) on the catalytic properties of lipase from Chromobacterium viscosum (lipase CV) in organic solvents; catalysis of ester and lactone synthesis were compared and, despite the similarities of the reactive groups involved in these reactions, some interesting differences were observed. Including 2-[N-morpholino]ethanesulfonic acid (MES) buffer in the lyophilisation medium of lipase CV increased its catalytic activity in transesterification and lactonisation, although the buffer salt requirement for maximal activity differed between the two reactions. Sorbitol, glucose, lactose, 18-crown-6 (crown ether 18-C-6), beta-cyclodextrin and bovine serum albumin were employed as alternative additives in the transesterification reaction, but were not as effective as MES buffer. Salt hydrates were used to investigate the effect of a(w) on esterification and lactonisation reactions catalysed by lipase CV. The maximum rate of hexadecanolide synthesis in toluene occurred at a(w) = 0.48. The optimum a(w) for the transesterification reaction in heptane/alcohol mixtures depended on the alcohol substrate employed (1-heptanol, 2-heptanol, or 3-methyl-3-hexanol) but not on the acyl donor (p-NP acetate or caprylate). The optimum a(w) values for both reactions were unchanged when a common solvent system (toluene/1-heptanol) was employed, indicating that the dependence of enzyme activity on a(w) is an intrinsic property of the enzyme-catalysed reaction and not a function of the solvent or other additives.  相似文献   

19.
Abstract

A cosmetic ester, cetyl oleate was synthesized using microwave irradiated system. The esterification reaction was carried using Candida antarctica lipase B in a solvent-free media. The influence of various reaction parameters was studied, and the efficiency of Fermase CALBTM10000 was compared with other enzymes. Equilibrium conversion of 97.5% was obtained within 20?min at 60?°C temperature, 1:2 oleic acid to cetyl alcohol molar ratio and 4% w/w dose of lipase. A comparative study showed that microwave irradiation is a much more efficient method than ultrasound irradiation and conventional heating. Fermase CALBTM10000 was reusable over 6 enzymatic cycles as its stability improved under microwave system. Physicochemical parameters of cetyl oleate were tested in order to analyze its suitability for further cosmetic use.  相似文献   

20.
Twenty-one different organic solvents were assayed as possible reaction media for the synthesis of butyryl esters from trimethylammonium alcohols in dry conditions catalyzed by immobilized Candida antarctica lipase B. The reactions were carried out following a transesterification kinetic approach, using choline and L-carnitine as primary and secondary trimethylammonium alcohols, respectively, and vinyl butyrate as acyl donor. The synthetic activity of the enzyme was strictly dependent on the water content, the position of the hydroxyl group in the trimethylammonium molecule, and the Log P parameter of the assayed solvent. Anhydrous conditions and a high excess of vinyl butyrate over L-carnitine were necessary to synthesize butyryl-L-carnitine. The synthetic reaction rates of butyryl choline were practically 100-fold those of butyryl-L-carnitine with all the assayed solvents. In both cases, the synthetic activity of the enzyme was dependent on the hydrophobicity of the solvent, with the optimal reaction media showing a Log P parameter of between -0.5 and 0.5. In all cases, 2-methyl-2-propanol and 2-methyl-2-butanol were shown to be the best solvents for both their high synthetic activity and negligible loss of enzyme activity after 6 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号